Внутрилабораторный контроль качества результатов анализа. Внутрилабораторный контроль качества лабораторных исследований. Проведение внутрилабораторного контроля по контролю результатов измерений при проведении испытаний

28.01.2024 Идеи бизнеса

Внутрилабораторный контроль качества в клинико-диагностической лаборатории - комплекс мероприятий направленных на обеспечение качества клинических лабораторных исследований.

Организация внутрилабораторного контроля качества

Основными задачами КДЛ является проведение необходимых клинических лабораторных исследований и повышение их качества. Качество лабораторных исследований должно соответствовать требованиям по аналитической точности, установленным нормативными документами Минздрава России, что является обязательным условием надежной аналитической работы КДЛ. Важным элементом обеспечения качества является внутрилабораторный контроль качества, который состоит в постоянном (повседневном в каждой аналитической серии) проведении контрольных мероприятий: исследовании проб контрольных материалов или применении мер контроля с использованием проб пациентов. Целью внутрилабораторного контроля является оценка соответствия результатов исследований установленным критериям их приемлемости при максимальной вероятности погрешности и минимальной вероятности ложного отбрасывания результатов выполненных лабораторией аналитических серий.

Внутрилабораторный контроль качества обязателен в отношении всех видов исследований, выполняемых в лаборатории. Правила внутрилабораторного контроля качества количественных исследований содержатся в Приказе МЗ РФ №45 от 07.02.2000 «О системе мер по повышению качества клинических лабораторных исследований в учреждениях здравоохранения Российской Федерации». При проведении контроля качества лабораторных исследований используются следующие термины:
Точность измерений - качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответствует малым погрешностям всех видов, как систематических, так и случайных.
Погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины.
Систематическая погрешность измерения - составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины.
Правильность измерений - качество измерений, отражающее близость к нулю систематических погрешностей в их результатах.
Случайная погрешность измерения - составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины.
Аналитическая серия - совокупность измерений лабораторного показателя, выполненных единовременно в одних и тех же условиях без перенастройки и калибровки аналитической системы.
Внутрисерийная воспроизводимость - качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одной и той же аналитической серии.
Межсерийная воспроизводимость - качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в разных аналитических сериях.
Общая воспроизводимость - качество измерений, отражающее близость друг к другу результатов всех измерений.
Установленное значение - метод-зависимое значение определяемого показателя, указываемое изготовителем контрольного материала в паспорте или инструкции.
Источниками погрешностей, выявляемых системой внутрилабораторного контроля качества, могут быть внутренние (лабораторные) и внешние факторы. К внешним факторам относятся принцип аналитического метода, качество приборов и реактивов, калибровочных средств. К внутренним - несоблюдение условий, установленных методикой проведения аналитического исследования: времени, температуры, объемов, правил приготовления и хранения реактивов.

В зависимости от характера влияния на результаты аналитического исследования различают систематические и случайные погрешности, которые выявляются с помощью многократного исследования контрольного материала в аналитических сериях. Систематическая погрешность характеризует правильность измерений, которая определяется степенью совпадения среднего результата повторных измерений контрольного материала (Х) и установленного значения измеряемой величины. Разность между ними называется смещением и может быть выражена в абсолютных или относительных величинах и рассчитывается в процентах по формуле:
В= ((Х – УЗ)/УЗ) х 100 %, где Х - среднее значение измерений контрольного материала, У3 - установленное значение.

Случайная погрешность отражает разброс измерений и проявляется в различии между собой результатов повторных измерений определяемого показателя в одной и той же пробе. Математически величина случайной погрешности выражается среднеквадратическим отклонением (S) и коэффициентом вариации (CV).

Внутрилабораторный контроль качества включает контроль воспроизводимости и точности (правильности) и может осуществляться с помощью методов, использующих специальные контрольные материалы или средства ряда методов, не требующих контрольных материалов. Методы, использующие контрольные материалы: метод контрольных карт; метод «Сизит»; метод контрольных правил Westgard. Методы, использующие данные пациентов:
Метод параллельных проб.
Метод средней нормальных величин («средней нормы»).
Исследование случайной пробы.
Исследование повторных проб.
Исследование смешанной пробы.

Метод контрольных карт. Ежедневно работник лаборатории при проведении всех видов анализа наряду с опытными пробами исследует контрольный материал. Определение содержания компонентов в контрольном материале проводят одновременно с исследованием опытных проб, при этом вместо сыворотки или плазмы крови берут контрольный материал в таком же количестве. Контрольные материалы могут быть приготовлены в лаборатории самостоятельно (сливные сыворотки) или закуплены у фирм - коммерческие контрольные материалы. В свою очередь, коммерческие сыворотки могут быть аттестованными (с известным содержанием компонентов) и неаттестованными (с неизвестным содержанием компонентов). Неаттестованные контрольные сыворотки в первую очередь используются для контроля воспроизводимости, а аттестованные - правильности.

Определение каждого компонента в контрольном материале проводят методом, применяемым в данной лаборатории. Результаты ежедневно регистрируются. Для аттестованных контрольных материалов по 20-ти результатам, полученным в 20 выполненных сериях, рассчитывают:
среднюю арифметическую Х;
среднее квадратическое отклонение S;
коэффициент вариации CV;
величину относительного смещения В.

Если используют неаттестованный материал или сливные сыворотки, по полученным результатам рассчитывают X, S и CV. Проверяют, что полученные значения В и CV не превышают их предельно допустимых значений. Если это условие выполняется, делают вывод о возможности использования рассматриваемой методики для целей лабораторной диагностики и переходят к построению контрольных карт. В случае превышения одним из полученных значений В или CV соответствующих предельно допустимых значений проводят дополнительную работу по устранению источников повышенного смещения или вариации или избирают другую методику определения данного показателя.

Контрольная карта представляет собой график, на оси абсцисс которого откладывают номер аналитической серии (или дату ее выполнения), а на оси ординат - значения определяемого показателя в контрольном материале. Через середину оси ординат проводят линию, соответствующую средней арифметической величине X, и параллельно этой линии отмечают линии, соответствующие контрольным пределам:
X ± 1S
X ± 2S
X ± 3S

С использованием построенных контрольных карт осуществляют оперативный («текущий») контроль качества результатов определения исследуемого показателя. С этой целью в каждой аналитической серии проводится по одному измерению в каждом из двух контрольных материалов (N и P); или два измерения в одном и том же контрольном материале, если используется единственный материал (в последнем случае на контрольную карту наносят по две точки на серию).

Оценку результатов исследования контрольных материалов проводят с использованием контрольных правил Westgard:
1 2S - если один из результатов анализа контрольных материалов выходит за пределы (х±2S), то проверяется последовательно наличие всех нижеследующих признаков, и аналитическая серия признается неудовлетворительной, если присутствует хотя бы один из них;
1 3S - одно из контрольных измерений выходит за пределы (х±3S);
2 2S - два последних контрольных измерения превышают предел (х+2S) или лежат ниже предела (Х-2S);
R 4S - два контрольных измерения в рассматриваемой аналитической серии расположены по разные стороны от коридора х±2S (не применяется к одному измерению в серии единственного контрольного материала);
4 1S - четыре последних контрольных измерений превышают (х+1S) или лежат ниже (х-1S);
10 X - десять последних контрольных измерений располагаются по одну сторону от линии, соответствующей X.

Появление контрольных признаков 1 3S и R 4S свидетельствует об увеличении случайных ошибок, в то время как признаки 2 2S , 4 1S , I0 X - об увеличении систематической ошибки методики. После устранения причин появления повышенных погрешностей все пробы, проанализированные в этой серии (и пациентов, и контрольные), исследуют повторно. Методы, использующие контрольные материалы, наиболее широко применяются для контроля ачества в КДЛ. Однако эти методы не выявляют ошибку в целом.

Контроль по ежедневным средним. Для многих исследований в качестве дополнительного можно рекомендовать контроль по ежедневным средним, в котором используются образцы или результаты исследования образцов пациентов . Условия, необходимые для внедрения метода: число проб пациентов, исследуемых ежедневно, должно быть достаточным для статистической достоверности данных (30 и более, значение этого числа зависит от анализируемого компонента); контингент обследуемых лабораторией пациентов должен быть достаточно однородным (по патологии , полу , возрасту); число усредняемых результатов должно быть примерно одинаковым, и оно зависит от анализируемого компонента.

Последовательность процедур:
Ежедневно из полученных в течение дня результатов проводится рассчет ежедневной средней арифметической величины (х), и эта процедура повторяется в течение 20 дней.
Даже из 20 ежедневных средних проводится расчет общего среднего х общ. и среднего квадратичного отклонения (S).
Рассчитываются контрольные пределы (X ОБЩ. ± 1S, Х ОБЩ. ± 2S, Х ОБЩ. ± 3S) и строится контрольная карта.
После построения контрольной карты в лаборатории ежедневно рассчитывается х из всех результатов каждого анализируемого показателя, и полученное значение наносится на карту в виде точки.

Анализ контрольной карты проводится по правилам Westgard.

Метод контроля воспроизводимости по дубликатам. Принцип данного метода внутрилабораторного контроля качества состоит в проведении двух параллельных исследований определяемого показателя в выбранной наугад пробе пациента, нахождении величины относительного размаха (R i , %) между первым значением показателя (Х 1) и вторым (Х 2) и сравнении ее с установленными контрольными пределами. Последовательность процедур:
определить уровень определяемого показателя в выбранной наугад пробе пациента дважды в течение одной аналитической серии;
рассчитать величину относительного размаха между двумя определениями по формуле:
R i = ((2 х (X 1 - X 2))/(X 1 + X 2)) х 100 %, где (Х 1 –Х 2) - разница между результатами определения по абсолютному значению;
повторить описанную процедуру в 20 аналитических сериях;
из полученных 20 значений (R 1, 2, 3..., 20) рассчитать среднее арифметическое значение R:

Далее рассчитывают контрольные пределы, умножая полученное значение R на коэффициенты, соответствующие 95% и 99% квантилям распределения размахов: для 95%-ной контрольной границы - 2,46; для 99%-ной контрольной границы - 3,23. Исходя из полученных контрольных пределов строится контрольная карта, где на оси абсцисс откладывается нулевая линия (она будет соответствовать нулевому размаху), на которой отмечается номер аналитической серии, а параллельно ей в удобном масштабе проводят линии, соответствующие R и контрольным границам 95% и 99%. На оси ординат отмечают уровень определяемого показателя. Далее, в каждой аналитической серии проводится параллельное исследование определяемого показателя в выбранной наугад пробе пациента. Пробы, предназначенные для параллельного исследования, должны располагаться случайным образом по длине аналитической серии. Полученное значение относительного размаха сравнивается с контрольными границами. Если хоть одно полученное значение выходит за контрольную границу, соответствующую 99% (контрольный признак «1 R99 », или если два последовательных значения выходят за контрольную границу «95% (контрольный признак «2 R9S »), то такая аналитическая серия считается непригодной, исследование проводится повторно.

Исследование смешанной пробы. При оценке воспроизводимости методом параллельных проб получают более близкие значения, чем обычно получают при наличии случайных ошибок. В методе смешанной пробы это исключено. Метод заключается в следующем: из группы образцов случайно выбирают два (А и В); из каждого образца А и В берут равные объемы и смешивают (образец С); исследуют все три образца, вычисляют теоретическое содержание компонента в образце С((А+В)/2) и различие между теоретическим и исследованным содержанием ((А+В)/2–С). Для построения контрольной карты по этому методу следует проводить исследование в течение 40 дней. Затем рассчитывают среднюю отклонения (d ср.) для единичных анализов путем сложения всех различий (опуская знаки) и деления на 40. Затем готовят контрольную карту, на которой чертят три прямых: 50% прямая составляет 0,845 dCP; 95% прямая составляет 2,5 dCP; 99,5% прямая составляет 3,5 dCP.

В дальнейшем ежедневно готовят смешанную пробу и результат отмечают на карте. Каждая точка представляет собой различие между теоретической величиной, рассчитанной как среднее двух проб, и действительной величиной, полученной исследованием смешанной пробы. Если много точек располагается выше прямых 95% и 99,5%, необходимо провести соответствующие мероприятия для выявления возможных источников ошибок.

Особенности контроля качества гематологических исследований

В связи со спецификой гематологических исследований контроль качества их предполагает наличие определенных контрольных средств и материалов, которые не используются в других видах лабораторных исследований. Для контроля качества определения содержания гемоглобина используются стандартные растворы гемиглобинцианида с известным содержанием Нb и специальные контрольные растворы (донорская кровь, лизированная кровь и консервированная кровь). Стандартный раствор гемиглобинцианида применяют для контроля правильности работы фотометров и построения калибровочной кривой в гемиглобинцианидном методе определения Нb в крови. Для контроля воспроизводимости определения Нb применяется раствор лизированной крови (гемолизат). Для приготовления гемолизатов используют: консервированную человеческую цитратную кровь, можно с истекшим сроком годности; консервированную лошадиную кровь; донорскую человеческую кровь, свежую, собранную в сосуд с 0,6 моль/л раствором лимоннокислого натрия из расчета 1:5.

200 мл полученной цитратной крови центрифугируют при 3000 об/мин в течение 30 мин. Плазму сливают, к эритроцитам добавляют 100 мл стерильной дистилированной воды и тщательно перемешивают на магнитной мешалке в течение 30 мин. Раствор помещают в холодильник при -20 градусах на 24 часа. На следующий день раствор размораживают и вновь тщательно перемешивают в течение 30 мин.

Затем раствор фильтруют в асептических условиях через стеклянный фильтр Millipore (соответствует №4 - с величиной пор 4–10 мкм) и разливают в стерильные пузырьки по 1 мл. Хранят раствор в холодильнике, оптимальная t = –20°С. Стабилен 1 год. Для оценки воспроизводимости определения концентрации Нb гемолизат исследуют в течение 20 дней, из полученных данных рассчитывают XСР, S, CV, контрольные пределы (X± 2S) и строят контрольную карту. Коэффициент вариации не должен превышать 5%.

Для контроля правильности используют контрольную кровь с известным содержанием гемоглобина. Контрольная кровь исследуется так же, как обычные пробы пациентов, т. е. в тех же случаях и в тех же условиях. Результаты исследования Нb в контрольной крови сравнивают с паспортными значениями, указанными в инструкции производителя, и рассчитывают смещение В. Оно не должно быть более 4%.

Для контроля качества подсчета клеток крови применяют следующие контрольные материалы: консервированная или стабилизированная кровь; фиксированные клетки крови (суспензии); контрольные мазки крови. Контроль качества определения эритроцитов осуществляется по принципу опосредованного контроля методом контрольных карт. В течение 2-х дней проводят 20 определений количества эритроцитов в консервированной крови, рассчитывают контрольные пределы и строят контрольную карту. Коэффициент вариации при подсчете эритроцитов в контрольном материале не должен превышать 5%.

Для контроля качества подсчета лейкоцитарной формулы в мазках крови используются контрольные мазки. Они готовятся из капиллярной крови доноров и больных обычным способом. Затем контрольные мазки многократно просчитываются (не менее 20 раз) по 200 клеток квалифицированными специалистами (не менее 5 человек). Из полученных данных статистически рассчитываются критерии определения правильности подсчета мазка путем рассчета X и S. Для увеличения срока хранения мазка используют клей БФ-6, образующий тонкую прозрачную пленку, герметически приклеивающуюся к поверхности мазка и стекла и предохраняющую мазок от воздействия окружающей среды. Подсчет лейкоформулы считается правильным, если результаты подсчета клеток входят в рассчитанные контрольные границы (X ± 2S) для каждого вида клеток крови.

Контроль качества исследований крови

Степень точности получаемых результатов исследований мочи в основном зависит от квалификации лаборанта, используемого оборудования, реактивов и метода исследования. Для получения правильных и воспроизводимых результатов исследования химического состава мечи используют контрольные материалы, близкие, по возможности, к образцам мочи пациентов, и контрольные мазки для контроля качества микроскопических исследований осадка мочи. В качестве контрольных материалов для контроля химического состава мочи используют: водные растворы веществ; слитую мочу с консервантами; искусственные растворы мочи с добавками веществ, исследуемых в моче.

На контрольных материалах проверяют методы, обычно применяемые в лаборатории для качественного и количественного исследования химического состава мочи. Водные растворы веществ с известным содержанием используются для контроля качества исследований химического состава мочи (например, раствор глюкозы , ацетона, альбумина). Для приготовления водных растворов используют дистиллированную воду, соответствующую ГОСТ 6709-72, и реактивы квалификации хч и чда.

Водные растворы хранят в холодильнике в течение 1 месяца. Для контроля качества исследований химического состава мочи можно использовать слитую мочу, приготовленную в лаборатории. К 1 л свежей человеческой мочи добавляют 2 г ЭДТА и при энергичном встряхивании и перемешивании флакона приливают 5 мл раствора тимола. Через 2 недели мочу центрифугируют для удаления слизи и незначительного количества мочевой кислоты. После такой обработки моча становится прозрачной и почти не имеет запаха.

Контрольный материал хранят при комнатной температуре. Срок годности - несколько лет. Слитая моча используется для контроля воспроизводимости.

Для контроля качества диагностических полосок используются контрольные растворы, имитирующие мочу. Способ приготовления: в мерную колбу на 500 мл с 200 мл дистиллированной воды добавляют 5 мл глюкозы (для инъекций внутривенно), 2 мл ацетона (ч, чда), 25 мл слитой человеческой сыворотки и 0,1 мл лизированной крови (к 0,1мл цельной крови добавляют 01 мл дистиллированной воды для лизиса эритроцитов). Тщательно перемешивают и доводят объем до метки физиологическим раствором. Используя 0,1 М НС1, величину рН доводят до 6,0. Контрольный раствор хранится в холодильнике не более одного месяца.

Контроль качества коагулологических исследований

Контроль качества коагулологических исследований имеет свои особенности, связанные, прежде всего, с характером методических принципов, которые применяются для исследования параметров свертывающей системы и фибринолиза и основаны, главным образом, на определении конечной точки образования фибрина, а также с видом используемых реактивов. Для контроля коагулологических исследований применяют:
Смешанную свежую плазму от большого количества доноров (не менее 20 человек).
Стандартную человеческую лиофилизированную плазму (пул) для калибровки.
Контрольную человеческую плазму с точным содержанием факторов свертывания (нормальным и патологическим).
Контрольную плазму с дефицитом индивидуальных факторов свертывания.
Контрольную плазму для контроля верхней и нижней границы терапевтической области при приеме антикоагулянтов.

В качестве основного контрольного материала используют слитую, только цитратную плазму с нормальным и пролонгированным временем свертывания. Способ приготовления слитой плазмы: свежую плазму, взятую с 3,8%-м раствором цитрата натрия, собирают от нескольких доноров, смешивают и разливают во флаконы. Быстро замораживают. Основное требование к плазме - отсутствие в ней следов гемолиза и эритроцитов.

Контрольную плазму каждый день размораживают и используют в начале работы и через каждые 20 проб. Рекомендуют использовать не менее одной порции плазмы с пролонгированным временем свертывания. Каждая проба и контрольная плазма исследуются параллельно. Если разница между параллелями больше 3 сек., то тест должен быть повторен со свежей пробой от пациента.

Контроль качества исследований мочи

Степень точности получаемых результатов исследований мочи в основном зависит от квалификации лаборанта, используемого оборудования, реактивов и метода исследования. Для получения правильных и воспроизводимых результатов исследования химического состава мочи используют контрольные материалы, близкие, по возможности, к образцам мочи пациентов, и контрольные мазки для контроля качества микроскопических исследований осадка мочи. В качестве контрольных материалов для контроля химического состава мочи используют: водные растворы веществ; слитую мочу с консервантами; искусственные растворы мочи с добавками веществ, исследуемых в моче.

На контрольных материалах проверяют методы, обычно применяемые в лаборатории для качественного и количественного исследования химического состава мочи. Водные растворы веществ с известным содержанием используются для контроля качества исследований химического состава мочи (например, раствор глюкозы, ацетона, альбумина). Для приготовления водных растворов используют дистиллированную воду, соответствующую ГОСТ 6709–72, и реактивы квалификации хч и чда. Водные растворы хранят в холодильнике в течение 1 месяца. Для контроля качества исследований химического состава мочи можно использовать слитую мочу, приготовленную в лаборатории.

К 1 л свежей человеческой мочи добавляют 2 г ЭДТА и при энергичном встряхивании и перемешивании флакона приливают 5 мл раствора тимола. Через 2 недели мочу центрифугируют для удаления слизи и незначительного количества мочевой кислоты. После такой обработки моча становится прозрачной и почти не имеет запаха.

Контрольный материал хранят при комнатной температуре. Срок годности - несколько лет. Слитая моча используется для контроля воспроизводимости. Для контроля качества диагностических полосок используются контрольные растворы, имитирующие мочу.

Способ приготовления: в мерную колбу на 500 мл с 200 мл дистиллированной воды добавляют 5 мл глюкозы (для инъекций в/в), 2 мл ацетона (ч, чдa), 25 мл слитой человеческой сыворотки и 0,1 мл лизированной крови (к 0,1 мл цельной крови добавляют 0,1 мл дистиллированной воды для лизиса эритроцитов). Тщательно перемешивают и доводят объем до метки физиологическим раствором. Используя 0,1 М НСl, величину рН доводят до 6,0. Контрольный раствор хранится в холодильнике не более одного месяца.

Оценка качества работы лаборанта

Оценка качества работы лаборанта должна быть частью программы внутрилабораторного контроля качества. Оценить технику работы лаборантов можно при помощи следующих методов:
Метод, использующий результаты внешней оценки качества.
Метод случайных проб.
Метод разведения проб.
Метод дублирования анализов.
Метод, использующий результаты внутрилабораторного контроля качества.

Если лаборант выполнил 20 или более анализов, то его работу оценить легко, если истинная величина проб известна. Среднеквадратическое отклонение лаборатории можно рассматривать как оценку способности производить правильные анализы каждым лаборантом при расчете средней всех стандартных отклонений для всех тестов. Эта средняя может быть названа комбинированным среднеквадратическим отклонением (KS).

Величину KS рассчитывают за определенный отрезок времени (полгода, год) для каждого лаборанта и дают грубую оценку аналитической способности каждого. Вначале откладываются результаты анализов контрольных материалов за определенный промежуток времени, идентифицируется каждый тест с именем лаборанта, который его выполнял. После истечения установленного срока готовятся оценочные листы для каждого лаборанта. На оценочном листе регистрируют название теста, полученный лаборантом результат, истинное значение и среднеквадратическое отклонение. Из этих величин рассчитывают разницу между истинной величиной и полученной лаборантом, и делят ее на среднеквадратическое отклонение, например: при исследовании гемоглобина крови лаборантом получено значение 163 г/л, X ср.=162 г/л; S=2, т.о. KS = (163-162)/2 = 0,5.

Чем ниже KS, тем лучше работа лаборанта. Данную величину можно использовать для ранжирования лаборантов по качеству работы: так, при KS:
0–0,5 - отлично;
0,5–1,0 - хорошо;
1,0–1,5 - удовлетворительно;
1,5–2,0 - плохо;
выше 2,0 - очень плохо.

Этот метод трудно применить в полностью автоматизированных лабораториях. Для сравнения качества работы лаборантов можно использовать результаты метода дублирования проб, метод разведения. Их недостатком является то, что их можно использовать только для оценки качества работы лаборантов, но не для ранжирования.

Автоматизация ведения внутилабораторного контроля качества

Ведение внутрилабораторного контроля качества в полном объеме для всех выполняемых в КДЛ исследований требует значительных затрат труда, времени и средств. Снижение этих затрат возможно только при автоматизации контроля качества с использованием персонального компьютера и программного обеспечения. Важно и то, что получаемые с помощью программы результаты обладают высокой достоверностью, т. к. уменьшается число ошибок, допускаемых при ручном ведении контроля. Единственное, что требуется от персонала КДЛ в качестве рутинной работы, - вводить в программу результаты измерений контрольного материала или проб пациентов.

Контроль работы приборов, оборудования и качества посуды

Применяемая в настоящее время широкая номенклатура лабораторных исследований требует использования самых разнообразных технических средств, и их перечень составляет десятки наименований. Комплекс организационно-технических мероприятий, позволяющих контролировать технические и метрологические характеристики выпускаемых изделий, осуществляется на основе Положения Государственной системы обеспечения единства измерений (ГСИ).

Измерительные приборы подлежат поверке в соответствии с ГОСТ 8002–71. В соответствии с руководством по метрологическому обеспечению средств измерений определен порядок и сроки поверки измерительных приборов в КДЛ. Измерительные приборы поверяются ведомственными метрологическими органами в соответствии с инструкцией, в которой указываются производимые операции и средства поверки. Поверке подлежат все технические и метрологические показатели, записанные в паспорте, прилагаемом к прибору. Работать на непроверенном приборе запрещается. Погрешность прибора входит в общую погрешность анализа. Погрешность анализа включает погрешности лаборанта, отбора пробы, дозирования, измерения.

В связи с тем, что поверочными средствами КДЛ не располагают, некоторые характеристики фотометрических абсорбциометров могут быть проверены с помощью контрольных светофильтров, входящих в комплект к прибору. Проверка может быть также осуществлена с помощью специально приготовленных растворов - жидких индикаторов, которые в определенной области спектра имеют постоянные спектральные характеристики. Жидкие индикаторы могут быть приготовлены непосредственно в КДЛ и позволяют проводить проверку точности измерений в различных областях спектра (от 300 до 550 нм). Пик абсорбции светофильтра должен находиться вблизи от пика абсорбции жидких индикаторов. Кроме того, приготовив соответствующие разведения данных растворов, можно проверить липидность данного прибора. Измерения проводятся в кювете с длиной оптического пути 10 мм.

Приготовление растворов по проверке спектральных характеристик фотометров

Сульфат меди в количестве 20 г растворить в 10 мл концентрированной серной кислоты, количественно перенести в мерную колбу на 100 мл, после достижения комнатной температуры довести объем до метки дистиллированной водой. Хранить в темной посуде. Сульфат кобальта аммония в количестве 14,481 г растворить в 10 мл концентрированной серной кислоты, перенести в мерную колбу на 100 мл, довести объем при комнатной температуре до метки дистиллированной водой. Хранить плотно закрытым в темной посуде. Хромат калия в количестве 40 мг растворить в 600 мл 0,05 Н раствора КОН в мерной колбе на 100 мл, довести объем до метки 0,05 Н раствором КОН.

В общую составляющую лабораторной погрешности входит погрешность дозирования. Поэтому совершенно особой проблемой является проверка применяемых дозирующих и мерных средств на точность показаний. Из практики известно, что около 30-40% всей мерной посуды отбраковывается ввиду ее погрешность мерного объема по следующей формуле:((исходный объем – полученный объем) / исходный объем) х 100%.

Результат, выраженный в %, не должен превышать: для 20 мкл - 3%, для 100–200 мкл - 1%, для 1 000–2 000 мкл - 0,3%. В каждой лаборатории необхоплохого качества. Оценка точности проводится на аналитических весах гравиметрическим способом: массу воды, составляющую объем дозирующего объекта, многократно (не менее 10 раз) взвешивают на аналитических весах. Переведя массовые единицы в объемные, рассчитывают димо разработать и внедрить программу контроля качества используемого оборудования, которая включает проверку и регистрацию состояния холодильников, водяных бань, термостатов, пипеток, таймеров, а также контроль качества дистиллированной воды (чистота, величина рН).

Обучение по внутрилабораторному контролю

Учебный центр Эко Сфера реализует обучение по внутрилабораторному контролю качества испытательных лабораторий.

Внутрилабораторный контроль (ВЛК) - необходимый элемент системы менеджмента качества - механизм управления качеством технологических процессов при выполнении исследований.

Программа обучения по внутрилабораторному контролю разработана доцентом кафедры СиАК, начальником отдела подготовки испытательных и измерительных лабораторий к аккредитации УНУМКиС МИСиС - Гусаровой С.Н.

ОБ ОБУЧЕНИИ

Обучение по внутрилабораторному контролю позволит:

  • освоить новые методы проведения внутрилабораторного контроля;
  • грамотно оформить результаты проведенного внутрилабораторного контроля;
  • закрепить имеющиеся теоретические знания на практических занятиях и в последующем реализовать их в Вашей лаборатории;
  • обеспечивать и контролировать соответствие метрологических характеристик измерений/анализов предъявляемым требованиям;
  • и, как следствие, полностью самостоятельно, а главное правильно, выполнить комплекс мероприятий по внутрилабораторному контролю.

Программа обучения по внутрилабораторному контролю составлена с учетом потребностей как для лабораторий, занимающихся инструментальными измерениями, так и аналитических лабораторий. Ознакомиться с подробной программой обучения Вы можете во вкладке СОДЕРЖАНИЕ ПРОГРАММЫ.

СРОКИ И СТОИМОСТЬ

Ближайшие сроки проведения обучения по внутрилабораторному контролю - с 1 по 3 июля 2019 года

Стоимость очного/дистанционного обучения - 15 00 0 рублей / 12 750 рублей (НДС не облагается)

Также действует выгодная система тарификации - скидки от 20 %

Наименование разделов и тем: Всего, час:
1. Теоретическая часть 13
1.1 Национальная система аккредитации. 412-ФЗ «Об аккредитации в национальной системе аккредитации» с учетом изменений в законодательных документах. Критерии аккредитации. Оценка соответствия испытательных лабораторий (ИЛ) в РФ. Задачи, требования, проблемы 2
1.2 Концепции «Единства измерений и погрешности результатов измерений» и «Прослеживаемости и неопределенности результатов измерений». Характеристики погрешности и неопределенность результатов измерений. Использование значений точности (неопределенности) на практике. Основные требования к методикам измерений. Правила выбора средств измерений и методик измерений, оценка пригодности методик измерений 3
1.3 Предупредительный контроль. Алгоритмы оперативного контроля процесса измерений. Планирование и организация работы по внутрилабораторному и внешнему контролю качества результатов измерений в испытательной лаборатории. Сбор и обработка массива данных по контрольным измерениям. Специфика организации внутрилабораторного контроля качества при реализации методов инструментальных измерений и физико-механических испытаний 4
1.4 Качество результатов измерений (испытаний, анализов). Регистрация результатов измерений. Оформление итоговых документов. Правила округления и представления результатов измерений. Типичные ошибки и работа над ошибками 4
2. Практическая часть 10
2.1 Практика оформления пакета документов испытательной лаборатории. Область аккредитации. Практические рекомендации по обеспечению беспристрастности и независимости, минимизации конфликтов интересов и конфиденциальность 2
2.2 Оценка приемлемости результатов измерений. Тест на знание правил округления и представления результатов измерений. Расчеты характеристик погрешности и неопределенности результатов измерений 1
2.3 Экспериментальная проверка применимости методики измерений в испытательной лаборатории и практика оформления итоговых результатов. Способы и виды внутрилабораторного контроля качества результатов измерений в испытательной лаборатории 4
2.4 Контроль стабильности результатов измерений в испытательной лаборатории. Построение и интерпретация контрольных карт Шухарта по представленным массивам данных 3
Итоговая аттестация, час: 1
Итого, час: 24

ДОКУМЕНТЫ ОБ ОБУЧЕНИИ

По итогам обучения и успешной сдачи экзамена Вы получите Удостоверения установленного образца о повышении квалификации по дополнительной профессиональной программе "Система менеджмента качества испытательных лабораторий" по теме "Внутрилабораторный контроль качества результатов измерений (контроля, испытаний, анализов)" в объеме 24 часа. Данный документ соответствует требованиям Министерства образования и науки Российской Федерации (Приказ № 499 от 01.07.2013 г.), а также удовлетворяет требованиям Росаккредитации.

1

Настоящая статья посвящена практической реализации контроля стабильности результатов анализа в форме выборочного статистического контроля по альтернативному признаку в испытательных лабораториях нефтеперерабатывающих предприятий. Представлена схема выбора плана контроля и условие приемлемости результатов анализа, включенные в проект стандарта организации на данный метод. Показана реализация метода для контроля внутрилабораторной прецизионности и погрешности определения плотности на примере рабочих проб неэтилированного бензина и стандартных образцов плотности. По результатам выполнения плана контроля, включающего объем выборки, приемочное и браковочное числа, стабильность результатов анализа плотности признана удовлетворительной. Преимуществами изложенного метода являются простота, возможность сокращения трудовых затрат и затрат на приобретение реактивов. Внедрение проекта стандарта организации по контролю стабильности результатов анализа в форме выборочного статистического контроля позволит лабораториям экспериментально подтверждать техническую компетентность и выполнять одно из требований критериев аккредитации при оптимизации затрат на внутренний контроль качества испытаний.

выборочный статистический контроль

стабильность результатов

внутрилабораторная прецизионность

погрешность

1. Бутылин Е.В., Михайлова П.Г. Разработка лабораторной информационной системы качества нефтепродуктов // Успехи в химии и химической технологии. – 2001. – №1. – URL: http://e.lanbook.com/view/journal/166824/page4 (дата обращения: 21.10.2015).

2. ГОСТ Р 51105-97. Топлива для двигателей внутреннего сгорания. Неэтилированный бензин. Технические условия.

3. ГОСТ Р 51069-97 Нефть и нефтепродукты. Метод определения плотности, относительной плотности и плотности в градусах АРI ареометром.

4. ГОСТ ИСО/МЭК 17025-2009 Общие требования к компетентности испытательных и калибровочных лабораторий.

5. РМГ 76-2004 Внутренний контроль качества результатов количественного химического анализа.

6. Федорович Н.Н. Контроль процесса испытаний для подтверждения компетентности лабораторий // Известия высших учебных заведений. Пищевая технология. – 2010. – №1. – С. 66.

7. Федорович Н.Н., Федорович А.Н. Реализация методик выполнения испытаний нефтепродуктов // Фундаментальные исследования. – 2008. – № 7. – С. 69.

В настоящее время испытательные лаборатории могут гарантировать заказчику получение точных и надёжных данных только в случае прохождения данной лабораторией процедуры аккредитации в соответствии с Федеральным законом «Об аккредитации в национальной системе аккредитации».

Аккредитация лабораторий - метод определения их технической компетентности в определённых видах испытаний, измерений и калибровок. Она обеспечивает официальное признание лабораторий, облегчая клиентам поиск и выбор надёжных поставщиков услуг в испытаниях, измерениях и калибровках, удовлетворяющих их требованиям. Аккредитация лабораторий высоко оценивается на международном и национальном уровне как надёжный индикатор технической компетентности.

Ключевым требованием при аккредитации испытательных лабораторий является наличие и исполнение руководства по качеству. Подробные требования к системе менеджмента и исполнению этой системы - необходимые условия для нормальной работы аккредитованного лица, ведь именно указанный документ описывает все процедуры, обеспечивающие прослеживаемость и достоверность оценки. Система менеджмента лаборатории предусматривает требования к основному процессу - выполнению методик испытаний, и к процессам обеспечения ресурсами, анализа и измерений, а также выделяет обратную связь с потребителем .

При разработке и актуализации руководства по качеству испытательные лаборатории руководствуются требованиями стандарта ГОСТ Р 17025 .

В руководстве по качеству должно быть описание правил управления качеством результатов испытаний, в том числе правил планирования и анализа результатов контроля качества испытаний, которыми предусмотрен внутренний контроль качества испытаний.

Как показывает практика, проведение внутреннего контроля качества в испытательных лабораториях осуществляется в форме контроля стабильности результатов анализа с использованием контрольных карт Шухарта .

Мы предлагаем контроль стабильности результатов испытаний в испытательной лаборатории нефтеперерабатывающих предприятий проводить в форме выборочного статистического контроля (ВСК) по альтернативному признаку. Он позволяет осуществлять контроль погрешности и внутрилабораторной прецизионности результатов анализа. Данный метод прост в исполнении, выполняется с использованием результатов анализа рабочих проб, требует меньшего количества стандартных образцов, снижает общее количество испытаний, необходимых для контроля.

Нами разработан проект стандарта организации СТО «Внутрилабораторный контроль качества испытаний. Контроль стабильности результатов испытаний в форме выборочного статистического контроля внутрилабораторной прецизионности и погрешности результатов анализа» с учетом рекомендаций РМГ 76 .

План ВСК внутрилабораторной прецизионности и погрешности результатов анализа и его выполнение представлены на рис. 1 и 2.

Рис. 1. План выборочного статистического контроля внутрилабораторной прецизионности и погрешности результатов

В соответствии с проектом стандарта организации провели контроль стабильности результатов испытаний показателя плотности при 15 °C.

Для контроля внутрилабораторной прецизионности использовали результаты испытаний рабочих проб неэтилированного бензина марки Нормаль-80 по ГОСТ Р 51105 , для контроля погрешности - ГСО плотности нефти и нефтепродуктов.

Рис. 2. Реализация плана выборочного статистического контроля внутрилабораторной прецизионности и погрешности

Контроль стабильности результатов испытаний проводили в течение месяца. Объем контролируемой совокупности результатов анализа составил 90 рабочих проб. Предел приемлемого качества выбрали 6,5 %, т.к. он рекомендуется при анализе проб промышленного производства. На стадии внедрения в лаборатории ВСК использовали нормальный уровень контроля качества (нормальный контроль).

По представленным исходным данным выбрали параметры плана ВСК:

а) число контрольных процедур (объем контрольной выборки), необходимых для оценки качества результатов анализа партии рабочих проб, выполняемых в течение месяца, n = 13;

б) нормативы ВСК:

1) приемочное число h = 3;

2) браковочное число h′ = 4.

В соответствии с планом выборочного контроля из результатов испытаний плотности рабочих проб неэтилированного бензина марки Нормаль-80, полученных за месяц, выбрали случайным образом (используя таблицу случайных чисел) 13 результатов контрольных процедур, полученных по результатам контрольных измерений.

Для контроля внутрилабораторной прецизионности определили норматив контроля (предел внутрилабораторной прецизионности) Rл с учетом значения СКО внутрилабораторной прецизионности sRл. По данным предыдущих периодов sRл = 0,0001.

Значение норматива контроля Rл рассчитали по формуле

R л = 2,77 s R л, (1)

где s R л - значение СКО внутрилабораторной прецизионности (показатель внутрилабораторной прецизионности результатов анализа).

Каждый результат контрольной процедуры сравнили с нормативом контроля Rл. По результатам сравнения делали вывод о соответствии или несоответствии результата контрольной процедуры.

Результаты выборочного статистического контроля внутрилабораторной прецизионности с использованием рабочих проб неэтилированного бензина марки Нормаль-80 представлены в табл. 1.

В результате оценки 13 выборок при контроле внутрилабораторной прецизионности получили, что число несоответствующих результатов контрольных процедур, т.е. результатов контрольных процедур, которые выше значения норматива контроля, составляет h к = 3.

Полученное значение h к сравнили с приемочным числом h = 3.

Таблица 1

Результаты выборочного статистического контроля внутрилабораторной прецизионности с использованием рабочих проб

Контролируемый объект - неэтилированный бензин марки Нормаль-80

Определяемая характеристика - плотность при 15 °С, г/см3

Шифр пробы

Результаты контрольных измерений

Результат контрольной процедуры

Rк = Х1 - Х2 

Норматив контроля (предел внутрилабораторной прецизионности) Rл

Так как hк ≤ h (3 ≤ 3), то внутрилабораторную прецизионность результатов испытаний рабочих проб, полученных в течение контролируемого периода, считаем удовлетворительной.

При контроле погрешности за контролируемый период провели 13 испытаний объекта контроля, в качестве которого использовали Государственный стандартный образец плотности нефти и нефтепродуктов ГСО 8156-2002 индекс ПЛ-2 с аттестованным значением при 15 °С 730,5 кг/м3.

Результаты контрольных процедур Kк при контроле погрешности рассчитали по формуле

K к =Х ср ‒ С, (2)

где Хср - среднее арифметическое значение результатов параллельных определений характеристики образца для контроля; С - аттестованное значение характеристики образца для контроля.

Значение норматива контроля K при контроле погрешности определили по формуле

где ± Dл - значение характеристики погрешности результатов анализа, соответствующее аттестованному значению образца для контроля.

Абсолютная погрешность аттестованного значения используемого стандартного образца при Р = 0,95 составляет ±0,0003 г/см3.

Полученные результаты представлены в табл. 2.

В результате оценки 13 контрольных процедур при контроле погрешности получили, что число несоответствующих результатов контрольных процедур, т.е. результатов контрольных процедур, которые выше значения норматива контроля, составляет h к = 1.

Полученное значение hк сравнили с приемочным числом h = 3.

Так как hк ≤ h (1 ≤ 3), то погрешность результатов испытаний, проводимых в течение контролируемого периода, считаем удовлетворительной.

В случае неудовлетворительной внутрилабораторной прецизионности или погрешности результатов анализа выясняют и устраняют возможные причины, а затем может быть принято решение об установлении для последующей выборки контрольных процедур усиленного контроля качества с более жесткими нормативами контроля. Если внутрилабораторная прецизионность или погрешность результатов анализа при нормальном контроле в течение десяти последовательных контролируемых периодов признается удовлетворительной и суммарное количество несоответствующих результатов контрольных процедур в десяти выборках не превосходит соответствующего предельного числа, то переходят на ослабленный контроль. В рассмотренной ситуации число контрольных процедур уменьшается до 5.

Таблица 2

Результаты выборочного статистического контроля погрешности с использованием стандартного образца

НД на методику испытаний ГОСТ Р 51069

Определяемая характеристика - плотность при 15 °С, г/см 3

Аттестованное значение объекта контроля - 730,5 кг/м 3 (0,7305 г/см 3)

Номер анализа

Результаты контрольных определений

Результат контрольного измерения, Хср

Результаты контрольных процедур Kк, Kк = Хср - С

Норматив контроля, K

Отметка о несоответствующем результате контрольной процедуры

Таким образом, в работе показано, что предложенный метод по сравнению с контрольными картами Шухарта исключает дублирующие процедуры, что значительно снижает трудовые затраты и затраты на приобретение стандартных образцов. Внедрение разработанного проекта СТО в рамках действующей системы менеджмента в испытательной лаборатории нефтеперерабатывающего производства не представит трудностей и позволит лаборатории продемонстрировать оптимизированный подход к обеспечению качества результатов испытаний, которое учитывается при аккредитации лаборатории.

Рецензенты:

Ясьян Ю.П., д.т.н., профессор, зав. кафедрой технологии нефти и газа, ФГБОУ ВПО «Кубанский государственный технологический университет», г. Краснодар;

Боковикова Т.Н., д.т.н., профессор, профессор кафедры химии, метрологии и стандартизации, ФГБОУ ВПО «Кубанский государственный технологический университет», г. Краснодар.

Библиографическая ссылка

Федорович Н.Н., Федорович А.Н., Светловская А.Ю., Молчанова Я.М. ОПТИМИЗАЦИЯ ВНУТРИЛАБОРАТОРНОГО КОНТРОЛЯ КАЧЕСТВА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ // Фундаментальные исследования. – 2015. – № 11-3. – С. 511-515;
URL: http://fundamental-research.ru/ru/article/view?id=39450 (дата обращения: 24.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

- Контроль стабильности результатов анализа с применением контрольных карт. Особенности программной реализации

Введение

Настоящая статья продолжает рассмотрение особенностей программной реализации внутрилабораторного контроля (ВЛК) , которое было начато в продолжено в . Здесь предметом рассмотрения будет контроль стабильности результатов количественного химического анализа (КХА) с использованием контрольных карт (КК). Наряду с оперативным контролем, рассмотренным в , это - наиболее востребованная на практике разновидность ВЛК . Кроме того, именно контроль с использованием КК является для лабораторий наиболее сложным с методологической и объёмным с практической точки зрения. И поэтому именно КК побуждают лаборатории искать средства автоматизации при внедрении у себя процедур ВЛК.

Напомним, что, как и в предыдущих статьях, базовым документом, регламентирующим ВЛК, для нас является РМГ 76 . Дополнительно мы также будем ссылаться на стандарты серии 5725 , точнее на 6-й из них .

Методология КК

Карты Шухарта

Как средство контроля КК известны с начала прошлого века . Впервые они были предложены Шухартом в 1924 году.

В основе своей КК являются графическим средством статистического анализа изменчивости процессов. Как нормативные категории статистические методы описаны в стандартах серии ГОСТ Р 50779. В них, в частности, имеются и документы, регламентирующие КК . Напомним кратко некоторые основные положения этих документов.

Основным индикатором состояния процесса является наклон графика КУСУМ. Для обнаружения недопустимого наклона используются различные методы. Основным в является метод так называемых V -масок. В этом методе сумма накапливается непрерывно на всем протяжении построения КК. Не будем останавливаться здесь на этом методе, поскольку в ВЛК используются другой – с постоянными контрольными пределами. Коротко суть его заключается в следующем. КУСУМ накапливается не всегда, а только когда накапливаемая переменная выходит за некоторый порог. Кроме того, КУСУМ прерывается, когда её график пересекает нулевую линию (процесс в стабильном состоянии), либо когда её график пересекает соответствующий контрольный предел (стабильность процесса подвергается сомнению). В ВЛК в качестве накапливаемой переменной используется отклонение измеренного значения X изм от аттестованного значения X ат образца для контроля (ОК), которое, очевидно, может быть как положительным, так и отрицательным. Соответственно возникает два набора прерывающихся графиков КУСУМ: положительные суммы и отрицательные суммы


Рис 2

КУСУМ-карты в ВЛК являются индикатором систематических погрешностей. Действительно, результат i -го измерения составляет:

X изм, i = X ист + ? X сл, i + ? X сист,

где X ист – истинное измеряемое значение, принимаемое равным X ат, ? X сл, i – случайная i -я погрешность, ? X сист – постоянная систематическая погрешность. Тогда для КУСУМ по n точкам имеем:

Очевидно, что первый член Q сл, n , связанный со случайным разбросом, при возрастании n будет стремиться к нулю примерно как , тогда как второй член, связанный с систематической ошибкой, пропорционален n . И, значит, если бы график КУСУМ не прерывался, то рано или он пересёк бы один из контрольных пределов.

КК в ВЛК

В случае ВЛК объектами контроля являются МВИ, а в качестве контролируемых процессов выступают процессы выполнения измерений. При этом в качестве характеристик процесса выбираются переменные, характеризующие погрешность МВИ.

Если попытаться сопоставить РМГ76 и ГОСТы серии 50779, то можно утверждать, что в ВЛК используются, в общем, стандартные карты, а именно:

· R -карты – для КК повторяемости и внутрилабораторной прецизионности (далее прецизионности);

· карты скользящих размахов – для КК прецизионности в методе с использованием (одного) ОК;

· X -карты – для КК погрешности;

· КУСУМ-карты – для контроля систематической погрешности с использованием ОК.

В случае же отсутствия опорного (аттестованного) значения проблемы возникают и с контролем погрешности, поскольку нет возможности в чистом виде получить ряд, характеризующий систематическую составляющую этой погрешности, так что приходится использовать некие искусственные характеристики. В результате мы приходим к таким методам, как регламентированные в РМГ76 метод добавок, метод разбавления, метод добавок совместно с разбавлением и метод с другой (контрольной) МВИ. Методологические ограничения данных методов рассматривались в . Здесь добавим только, что поскольку для получения одного значения необходимо провести несколько измерений, случайный разброс характеристики увеличивается, что приводит к уменьшению вероятности обнаружения постоянного сдвига.

Второе следствие использования рабочих проб (или нескольких ОК) связано с тем, что в случае, когда погрешности МВИ зависят от измеряемого значения, для построения и корректной интерпретации КК необходимо устранить изменение от точки к точке контрольных пределов. Это достигается за счёт нормировки значений характеристики:

· на величину предела предупреждения (КК в приведённых единицах) – в общем случае;

· на измеренное значение (КК в относительных единицах) – в случае, когда контролируемый показатель пропорционален измеряемому значению.

Всё сказанное имеет следующие последствия для программной реализации КК для ВЛК .

1. Программа должна проверять допустимость погрешности аттестованного значения используемого ОК. Аналогичные проверки требуются для значений добавок, разбавлений и пр.

2. Сочетание всех возможных методов и нормировок приводит к необходимости программирования около 25 разновидностей КК. А если учесть дополнительные (допускаемые в РМГ76) возможности, например использование на одной КК контрольных значений, полученных различными методами (скажем с использованием ОК с добавками), то количество видов КК становится ещё больше. Программный код возрастает значительно, так как с точки зрения программирования КК отличаются наборами исходных данных, алгоритмами расчётов и проверок корректности, видами графического представления и особенно – отчётными формами. А при реализации в LIMS (Лабораторная Информационная Система) – это ещё и различные способы регистрации и подготовки образцов и обработки результатов испытаний.

3. Наличие различных нормировок КК требует корректного и рационального их применения. На практике пользователю бывает сложно учесть все нюансы. Типичный пример. Если используется метод с ОК, то даже при наличии зависимости показателей от измеряемого значения КК строятся в абсолютных единицах. Но при использовании нескольких ОК абсолютные единицы уже не пройдут: потребуется нормировка. Хотя и здесь, опять таки, возможны исключения, если все ОК имеют одинаковые X ат! Поэтому программа должна проверять корректность КК, что допустимо как на этапе конфигурирования контроля, так и в момент выполнения вычислений (именно так «поступает» программа Lab 5725X компании «Аврора-ИТ»). Второй пример. Для метода с ОК в контроле прецизионности рекомендуется строить КК скользящих размахов. Но если использовать сразу несколько ОК, то такая карта станет некорректной, потому что некоторые разности будут отслеживать не столько изменчивость измерений, сколько разность аттестованных значений. Эта ситуация также требует проверки. Упомянутая программа Lab 5725X использует около десятка подобных проверок, а также анализирует менее серьёзные проблемы, такие как, например, отсутствие погрешности аттестованного значения. В таких случаях КК считается корректной, но фиксируется предупреждение.

Специфика КХА

Контроль МВИ заключается в проверке статистической подконтрольности погрешностей измеряемых характеристик. Но применительно к КХИ здесь имеется ряд особенностей, требующих особого рассмотрения.

Во-первых, погрешность необходимо проверять не в одной точке (не для одного измеряемого значения), а во всём диапазоне измерений. Для этого необходимо, согласно РМГ76, для одной и той же характеристики строить несколько КК, например в начале, середине и конце диапазона (поддиапазона). А поскольку КК, как уже говорилось, принято строить парами: R -карта (КК преционности) + X -карта (КК погрешности), – то может легко оказаться, что на одну МВИ как объект регулирования будет назначено одновременно несколько КК. С одной стороны, это приводит к необходимости ведения в программе связанных (через МВИ) процессов. С другой, – возникает опасность перерегулирования контроля МВИ: случайные (ложные) тревоги будут возникать слишком часто, то на одной КК, то на другой. Особенно если принять во внимание дополнительные решающие правила. Поэтому в программе желательно иметь возможность настраивать перечень отслеживаемых нарушений. Хотя, вообще говоря, это, прежде всего, проблема пользовательского планирования, а не программы.

Во-вторых, существует близкая к описанной выше следующая проблема. Некоторые объекты регулирования (МВИ) имеют сразу несколько характеристик (измеряемых компонентов). Это, например, МВИ определения фракционного состава или масспектрометрии. Потенциально каждая из характеристик (количество которых порой составляет десятки) может подвергаться контролю. При этом вероятность перерегулирования возрастает многократно. Не говоря уже о том, что программирование (регистрация, расчёт, интерпретация, представление) таких связанных процессов требует значительных усилий, особенно в LIMS . Несмотря на то, что такое программирование в той или иной степени решается в программах для ВЛК, например в Lab 5725 X , последовательно и полно задача связанных КК, насколько известно автору, не решается нигде. И дело здесь связано не только со сложностью реализации, но и с потенциальной громоздкостью и плохой воспринимаемостью пользовательского интерфейса.

Контрольные пределы

Согласно РМГ76 для расчёта контрольных пределов используются внутрилабораторные показатели качества результатов измерений. Не касаясь способа их получения и представления, что рассмотрено в , а также будет обсуждаться в публикации по специальному эксперименту, рассмотрим здесь только следующую проблему.

Как уже говорилось, КК ориентированы либо на контроль статистической управляемости процесса, либо на гарантирование заявленных требований (приёмочные КК). Если попытаться соотнести это с РМГ 76, то можно утверждать, что здесь регламентируется, в первую очередь, контроль статистической управляемости, поскольку используются контрольные пределы, определённые по экспериментальным данным, полученным из специального эксперимента или из предыдущей КК.

Примечание. Расчётные показатели мы не учитываем, так согласно РМГ76 они являются ориентировочными и для целей контроля (принятия решений) не должны использоваться.

Что касается приёмочных (гарантирующих погрешности) КК, то потенциально к таковым можно было бы отнести КК с контрольными пределами, вычисленными на базе метрологических характеристик МВИ. Подобные КК в РМГ76 не регламентируются, но автору представляется вполне естественным, что во многих случаях лаборатории захотят вести именно такой контроль. Тем более что в примерах ГОСТ 5725 он имеется, а с точки зрения программирования его реализация очень проста: всё, что нужно, это использовать в чистом виде показатели из нормативной документации (НД) на МВИ (или расчётные формулы по РМГ76). Для примера – в Lab 5725 X эта возможность реализована через простое копирование метрологических характеристик в Протокол установленных показателей.

Оценивание показателей

В соответствии с РМГ76, в конце периода наблюдения (после накопления статистически значимого количества контрольных процедур) по результатам КК могут рассчитываться (оцениваться) новые показатели (характеристики) погрешности МВИ. При необходимости эти показатели оформляются в виде нового Протокола и используются в последующих КК.

Несмотря на кажущуюся простоту расчётов новых показателей по приведённым в РМГ76 формулам, они, в действительности, сопряжены с рядом затруднений.

1. Расчёт повторяемости не регламентируется. Это прямое следствие принятой (предписанной) в ГОСТ 5725 и РМГ61 гипотезы (модели), что на этапе аттестации МВИ она совершенствуется до такого уровня, при котором показатели повторяемости во всех лабораториях, соблюдающих регламент НД на МВИ, будут одинаковыми. Но на практике, видимо, следует ожидать и другую картину. По крайней мере, для старых МВИ, не проходивших аттестацию по РМГ61. И в этом случае расчёт показателя повторяемости становится уместным, с использованием формул, подобных рекомендуемым для показателя прецизионности.

2. Для расчёта показателя прецизионности в РМГ76 приводятся две равноправные формулы. Математическое ожидание у них одинаковое, но на конечной выборке они будут давать, понятно, несколько отличающиеся значения. Необходимо предоставить пользователю возможность выбора любой из них.

3. По РМГ76, при оценке систематической погрешности θ л ’ отн и её статистической значимости на фоне случайного разброса, то есть при расчёте критерия Стьюдента учитывается только СКО прецизионности? C ’ л. Это означает, что при достаточно большом количестве используемых результатов даже незначительные систематические сдвиги могут быть «выловлены» (станут статистически значимыми). А это приводит, в соответствии с РМГ76, к необходимости введения поправок в МВИ или установления несимметричных показателей погрешности. Такое положение нецелесообразно во многих случаях, например, если? л ’ отн меньше регламентированного в НД на МВИ округления.

Заметим, что в аналогичных формулах в Приложении В в РМГ76 при расчёте критерия Стьюдента наряду с? C ’ л учитывается погрешность аттестованного значения ОК. Это гарантирует, что? л ’ отн по крайней мере меньше этого значения «выловлено» не будет. Можно распространить такой подход и на оценки по КК. А «развивая», можно дополнить его введением и других стабилизирующих факторов, учитывающих, в частности, округление. Или же можно попытаться использовать «компенсацию» систематической погрешности за счёт искусственного увеличения? C ’ л.

Примечание 1 . Разумеется, все эти приёмы попадают в разряд нерегламентированных. Но на взгляд автора, без них обойтись трудно.

Примечание 2 . К сожалению, проблемы округления никак не рассматриваются в НД, регламентирующую КК. Но для КХА, где округления часто достаточно велики, это представляется весьма актуальным. Как минимум, в этом случае присутствует нарушение (за счёт дискретности) нормального распределения. Или вот: как трактовать решающее правило «шесть убывающих точек подряд»? Округления уравняют некоторые значения, так что может быть лучше говорить «шесть монотонных (не возрастающих) точек подряд»?

4. И, наконец, самая большая проблема: что делать, если имеется зависимость персчитываемого показателя от измеряемого значения? Так, даже в простейшем случае линейной зависимости?(X ) = A 1 + A 2 ?X при пересчёте по одной КК непонятно, что корректировать: A 1 , A 2 или, скажем, наклон. А в случае, если используется несколько КК, на повестку дня вообще может встать необходимость регрессионного анализа. В настоящее время, видимо, никакое программное решение полностью автоматизировать пересчёт показателей не сможет, ограничиваясь проверкой корректности расчёта (он допускается лишь в некоторых случаях) и предоставлением результатов, полученных при прямом следовании формулам, оставляя трактовку и использование этих результатов на усмотрение пользователя.

Регистрация проб

Данный раздел актуален, в первую очередь, для реализации ВЛК в LIMS (лабораторно-информационных системах) , где при регистрации проб необходимо использовать объекты и функции соответствующих модулей. Для калькуляторов же ВЛК имеет значение, пожалуй, лишь определение частоты контроля по соответствующим формулам РМГ76 и составление графика контрольных процедур.

· конфигурирование процесса;

· планирование очередного периода накопления;

· регулярные контрольные испытания;

· оценка показателей и выполнение корректирующих мероприятий по оценкам;

· завершение процесса.


Рис 3

В отличие от оперативного и других видов контроля, контроль стабильности с использованием КК не требует предварительного проведения оперативного контроля повторяемости для каждого измерения. Это несколько упрощает алгоритмы. На для примера показана схема алгоритма контроля погрешности с использованием ОК.

Рис 4 . Алгоритм контроля стабильности с использованием КК.
Контроль погрешности с применение ОК.

Алгоритмы для других видов КК принципиально не будут отличаться от изображённого, за исключением следующего:

1. Вместо подготовки ОК будет фигурировать подготовка рабочей пробы.

2. К основному образцу добавятся дополнительные образцы: с добавкой, разбавленный, испытываемый по контрольной МВИ.

3. Для соответствующих образцов добавятся процедуры введения добавки или разбавления.

4. В большинстве случаев оценка показателей должна быть исключена как не регламентированная.

Заметим, что представленная схема допускает дальнейшую детализацию. Так, например, проверка корректности расчёта подразумевает проверку погрешности аттестованного значения, проверку достаточности добавки или разбавления, проверку выполнения предыдущих корректирующих мероприятий и пр., а подготовка образцов может включать регистрацию и назначение проб конкретным испытателям.

Программная реализация

Как и другие виды ВЛК, программная поддержка методов контроля с применением КК может быть реализована в различных вариантах: калькулятор ВЛК, автономная программа с БД, модуль в лабораторно-информационной системе (LIMS) (см. ). Но на практике существует очень мало таких реализаций: по мнению автора, их – не больше двух (не считая варианты Lab 5725 ). И это не пренебрежение к подобному программированию процедур РМГ76. Ведь аналогичных программ поддержки КК в медицине автору, даже при беглом поиске, удалось найти более 6.

Здесь можно сказать следующее. С одной стороны, именно КК стимулируют программную автоматизацию ВЛК. Но, в силу своей обширности в РМГ76, они же и «губят» эту автоматизацию. В отличие от ситуации в медицине, где ОСТ 91500 или аналогичные документы настолько просты, что запрограммированы многократно.

Возвращаясь к РМГ76, в качестве иллюстрации его программной поддержки на показан интерфейс ввода результатов для построения КК в программе Lab 5725 X , а на – полученные по этим данным КК.


Рис 5


Рис 6

Заключение

Реализация контроля с использованием КК – не самая простая тема в ВЛК. Но это – основной вид контроля, поскольку он наиболее систематичен и результативен. Так что без его программной поддержки любая программа ВЛК будет несостоятельна.

Такая программная поддержка, как пытался показать автор выше, сопряжена с большими трудностями методологического и практического характера. При её реализации необходимо учитывать много особенностей, в противном случае пользователи программы начнут на практике сталкиваться с различными проблемами, включая получение «странных» результатов или выход в тупиковые ситуаций. Немалое число таких «странностей» автор обнаружил именно как «пользователь» (экспериментально, то есть при тестировании программы).

Второе, на что следует обращать внимание, – при создании программной поддержки внутрилабораторного контроля (ВЛК) необходимо тщательно продумывать пользовательский интерфейс, исходя, в первую очередь, не из математики, а из последовательности выполняемых пользователем операций. Внутрилабораторный контроль (ВЛК) с использованием КК, это не отдельные расчёты, а длительные процессы с упорядоченными последовательностями различных действий и вычислений.

И наконец. Воплощение в программе всех КК, регламентированных в РМГ76, неизбежно приводит к сложным и громоздким интерфейсам. На этом пути нетрудно потерять из виду одну из главных задач автоматизации – облегчение жизни пользователя. Снимая проблемы трактовки и использования нормативных документов НД, можно создать не менее трудные проблемы работы с программой. Один из возможных подходов к преодолению такого рода трудностей может заключаться в сознательном ограничении полноты программы с одновременной «пропагандой» среди пользователей разумной умеренности при планировании ВЛК. Именно для этого в статье рассматривались казалось бы не связанные с ВЛК вопросы перерегулирования процессов, ограниченности методов контроля без применения ОК и др.

Принятые сокращения

ВЛК

внутрилабораторный контроль

КК

контрольная карта

КУСУМ

кумулятивная сумма

КХА

количественный химический анализ

МВИ

методики выполнения измерений

НД

нормативная документация

ОК

образец для контроля

СКО

среднеквадратическое отклонение

LIMS

Laboratory Information Management Systems (Лабораторная Информационная Система , ЛИС , ЛИМС )

Литература

1. И.В.Куцевич, Аврора-ИТ «Специализированное программное обеспечение для автоматизации процедур внутрилабораторного контроля качества результатов количественного химического анализа», Современная лабораторная практика, №3, 2008 г., стр. 37–46.

2. И.В.Куцевич, Аврора ИТ, «Оперативный контроль процедуры анализа. Особенности программной реализации», Современная лабораторная практика, №1 (5), 2009 г., стр. 22–36.

3. «РМГ 76-2004 Государственная система обеспечения единства измерений. Внутренний контроль качества результатов количественного химического анализа», Москва, Издательство стандартов, 2004 г.

4. «ГОСТ Р ИСО 5725-6–2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике», ГОССТАНДАРТ РОССИИ, Москва, 2002.

5. Walter A Shewhart, «Economic Control of Quality of Quality of Manufactured Product», Van Nostrand, New York, 1931 г.

6. «ГОСТ Р 50779.40–96 Статистические методы. Контрольные карты. Общее руководство и введение».

7. «ГОСТ Р 50779.41–96 Статистические методы. Контрольные карты средних арифметических с предупреждающими границами».

8. «ГОСТ Р 50779.42–99 Статистические методы. Контрольные карты Шухарта».

9. «ГОСТ Р 50779.45–2002 Статистические методы. Контрольные карты кумулятивных сумм. Основные положения».

10. «ОСТ 91500.13.0001-2003 Правила проведения внутрилабораторного контроля качества количественных методов клинических лабораторных исследований с использованием контрольных материалов».

11. Westgard JO, Barry PL, Hunt MR, Groth T. «A multi-rule Shewhart chart for quality control in clinical chemistry». Clin Chem 1981;27:493-501.

12. РМГ 61-2003 Государственная система обеспечения единства измерений. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки.


Количество показов: 43950
Автор: Игорь Викторович Куцевич, ЗАО «АВРОРА-ИТ»
Заголовок: Программа для внутрилабораторного контроля (ВЛК)
Ключевые слова: контрольные карты шухарта, ВЛК, КХА процедуры внутреннего контроля качества, контроль стабильности результатов программа для автоматизации, компьютеризация лабораторий, Аврора ИТ
Описание: Программа для внутрилабораторного контроля (ВЛК) Аврора ИТ

В нашей лаборатории, как и в любой аккредитованной лаборатории, существует система качества и в том числе система качества выполнения анализа, поэтому одним из основных документов нашей аккредитованной лаборатории является «Руководство по качеству», в котором одним из основных разделов является раздел - «Политика и задачи системы качества» согласно ГОСТ Р ИСО/МЭК 17025-00 «Общие требования к компетентности испытательных и калибровочных лабораторий», которым мы непосредственно применяем в своей работе.

Внедрение стандартов ГОСТ Р ИСО 5725-2002 в практику испытательных лабораторий означает освоение принятых в международной практике правил планирования и проведения межлабораторных экспериментов по оценке показателей точности (правильности и прецизионности) методов и результатов измерений, способов оценки приемлемости результатов измерений, способов разрешения спорных ситуаций, внедрения процедур внутрилабораторного контроля качества применяемых методов измерений, что должно способствовать повышению качества измерений в лаборатории.

В основу политики в области качества и эффективности использования результатов количественных химических анализов (КХА) в лаборатории положена система метрологического обеспечения КХА, т.е. система управления и применения организационных, методических и технических разработок, норм и правил, направленных на обеспечение единства и точности КХА. Одной из основных функций этой системы является - проведение внутреннего контроля качества результатов КХА.

Внутрилабораторный контроль предназначен для выявления несоответствия условий выполнения измерений требованиям МВИ, предотвращения выдачи дефектных результатов и немедленного реагирования в ситуациях, когда погрешность контрольных измерений не соответствует приписным характеристикам МВИ.

Внутренний контроль качества результатов КХА предусматривает реализацию оперативного контроля повторяемости, промежуточной прецизионности, точности и статистического контроля и осуществляется по плану лаборатории, утвержденному руководителем. Необходимость применения той или иной формы контроля устанавливается конкретной методикой испытания.

Оперативный контроль осуществляется по алгоритмам, изложенным в методиках КХА или в МИ 2335-2003 «ГСИ. Контроль качества результатов количественного химического анализа» с учетом ГОСТ Р 5725-6-2002 «Точность (правильность и прецизионность) методов и результатов измерений» путем оценки соответствия результата контрольной процедуры по нормативу, установленному для данного анализа.

При использовании вышеперечисленных принципов, согласно пунктам «Руководство по качеству» существенно облегчается внутрилабораторный и межлабораторный контроль, поскольку устанавливаются единые правила анализа и регистрации данных и обеспечивается надежность результатов.

При проведении внутреннего контроля качества измерений в 2011-2012 году, мною использовался способ внутренней градуировки - метод стандартной добавки. В 2011-2012 году проводился 1 раз в квартал, в 2013 году - 1 раз в два месяца, с применением ГСО и МСО состава пестицидов (см. таблицу)

Наименование ингредиентов

НТД на методку

Объект анализа

альфа-ГХЦГ

ГОСТ Р 51209-98

гамма-ГХЦГ

ГОСТ Р 51209-98

альфа-ГХЦГ

ГОСТ 30349-96

Лук репчатый

гамма-ГХЦГ

ГОСТ Р 51209-98

Циперметрин

гамма-ГХЦГ

ГОСТ Р 51209-98

ГОСТ 23452-79

В 2011 году внедрена программа внутреннего контроля качества количественного химического анализа, которая разработана с учетом требований выше перечисленных нормативных документов.

Программа определяет порядок контроля, объекты, средства и форму контроля качества результатов КХА. С помощью этой программы была проведена проверка подконтрольности процедуры выполнения анализа двух объектов: воды и молока. Данные приведены в таблице

Определяемый компонент

Гамма-ГХЦГ

Методика анализа

ГОСТ Р 51209-98

ГОСТ 23452-79

Погрешность методики (Д, %)

Средство контроля

МСО № 1134-05

Аттестованное значение (С,)

Средство измерения

Хроматограф Цвет-500

Хроматограф Цвет-500

Количество контрольных

измерений

6 (один раз в два месяца)

6 (один раз в два месяца)

Норматив контроля внутрилабораторной

Прецизионности (Квп), мг/л

Норматив контроля правильности, Кп

Расчетные данные в результате контрольных измерений:

Среднеквадратичное отклонение, Sх

Математическое ожидание, /?л /

Проверка выполнения условий:

0,03502 < 0,1901

0,00462< 0,0158

/ 0,16167/ ? 0,162

/ 0,01208/< 0,014

Стабильность процесса анализа признается удовлетворительной

При использовании способа внутренней градуировки (метода стандартной добавки), к пробе добавляют определенное количество стандартной добавки.

Главная предпосылка способа внутренней добавки состоит в том, что стандарт-добавка проходит вместе с пробой все стадии анализа.

Результаты анализа называются достоверными, если они правильно и хорошо воспроизводимы. Хорошая воспроизводимость достигается путем минимилизации случайных погрешностей, а правильность - устранения систематических погрешностей. Случайные погрешности можно оценить и минимилизировать в ходе внутрилабораторных исследований. Для выявления и устранения систематических погрешностей необходимы внешние средства - например, межлабораторные исследования.