Автоматизация основных логистических бизнес-процессов. Автоматизация процессов в логистике Автоматизация логистических процессов предприятия

12.05.2023 Интернет-магазины

10.08.2017

Для грамотной и эффективной работы сегодняшним организациям недостаточно только улучшать продукцию. Такой подход был актуален в начале нулевых. Сейчас для повышения эффективности необходима .

Бизнес-система любого вида – группа бизнес-процессов с одной итоговой целью. Цель – сбыть товар, услугу или информацию конечному потребителю и получить прибыль. Сам бизнес-процесс – комплекс, состоящий из взаимосвязанных действий, происходящих внутри бизнеса.

Ключевые составляющие бизнес-процессов в логистике

Внутренние процессы делятся на представленные ниже четыре вида:

    получение прибыли за счет реализации товара;

    планировка и управление внутренними данными для реализации сбыта;

    ресурсные процессы, в частности, доставка и содержание продукции на складе;

    преобразование.

Логистика отвечает за представленные ниже процессы:

    стратегическое планирование перемещения товара;

    полное контролирование товарных потоков.

Оптимизация бизнес-процессов в логистике позволяет , отгрузку ресурсов и снижение себестоимости товара. Чтобы правильно реализовать эти задачи, логистические компании:

    организуют доставку товара: согласовывают даты, анализируют транспортные возможности клиента, прокладывают маршрут, разрабатывают карты маршрутов;

    отвечают за товар: принимают и отгружают товар, организуют складское хранение;

    следят за документами: сообщают информацию получателю, фиксируют заявки от магазинов и проставляют отметки в накладных.

Дополнительная автоматизация бизнес-процессов в логистике помогает достичь еще более лучших результатов.

Оптимизация и реинжинириг бизнес процессов

Помимо совершенствования логистических процессов , для оптимизации процессов, напрямую относящихся к бизнесу, применяют реинжиниринг. Это понятие используют для обозначения полной перестройки организации ведения дел.

Общая схема реинжиниринговых процессов выглядит так:

    менеджеры осуществляют моделирование бизнес-процессов в логистике и конкретных задач фирмы в целом;

    на основе полученных данных разрабатывают новые модели и прорабатывают новые технологи;

    модель тщательно анализируют, после чего смотрят на позитивные и негативные последствия внедрения и оценивают полезность;

    если результаты положительные, новую модель внедряют в прямое производство.

Для грамотного реинжиниринга , прежде всего, воссоздают крупную карту, на которой изображены все компоненты, в итоге формирующие внутренние процессы. Карту составляют так, чтобы графически отобразить все необходимые мелочи и сформировать уровни, отображая горизонтальные и вертикальные взаимоотношения процессов.

После этого менеджеры приступают к тотальному анализу всех мелочей. Если итоговая прибыль после анализа окупает затраты на анализ больше, чем в 2 раза, то проект нужно объявить целесообразным и в ближайшее время реализовать весь предоставленный план.

Складывающиеся рыночные отношения в России требуют пересмотра подходов к управлению каждого хозяйствующего субъекта. Большинство предприятий организовано традиционно -- по функциональному признаку, когда во главе стоит руководитель, в подчинении которого находятся различные подразделения. В основе такой организации управления лежит принцип разделения труда и специализации, но такая структура имеет недостатки:

оторванность работы каждого сотрудника от результатов работы учреждения в целом, т.е. представление об эффективности организации у работника не выходит за рамки своего подразделения;

стремление работников выполнять свои обязанности таким образом, чтобы они удовлетворяли вышестоящего руководителя, т.е. отсутствует заинтересованность в том, чтобы результаты работы были удобны для всеобщего использования внутри фирмы;

затрудненный обмен и возможно искажение информацией между подразделениями по причине их обособленности.

Организация учреждений по функциональному признаку препятствует извлечению различных выгод, связанных с рассмотрением деятельности как процесса и выделением в рамках этого процесса различных потоков (материальных, финансовых, информационных и т. д.).

Функциональная изолированность отдельных подразделений даже при наличии высококвалифицированного персонала может тормозить повышение эффективности всей системы в целом. Поэтому одним из важнейших условий успешного функционирования организации является наличие такой системы информации, которая позволила бы связать воедино всю деятельность и управлять ею исходя из принципов единого целого. Решение очерченных проблем лежит в сфере информационной логистики, объектом исследования которой и являются информационные потоки, сопровождающие бизнес-деятельность.

Как известно, основной задачей информационной логистики является организация и структуризация потоков данных, сопровождающих материальный поток. Взглянем на эту задачу под другим углом зрения, абстрагируемся от материального потока и представим сам документ как первичный объект, а не как сопутствующую грузу информацию. В большинстве случаев, документ, как и некий продукт, проходит стадии создания («обработка сырья»), формирования («производства»), обработки («продажи»), передачи («перевозки») и хранения («складирования»). Поставщиками и потребителями документов являются сотрудники, деловые партнеры и клиенты данного предприятия. Таким образом, можно назвать «планирование, управление и контроль» потока документов на предприятии «логистикой бизнес-процессов предприятия» Глеб Попов Логистика для бизнес-процессов //Директор ИС, #02/2004.

На предприятии «информационный поток» представляет собой поток электронных документов, электронной почты и т.п. Именно «безбумажный» документооборот является единственным средством обеспечения минимальных сроков доставки и обработки информации с минимальными издержками. Что, собственно, и является целью концепции информационной логистики Хэссиг К., Арнольд М. Информационная логистика и менеджмент потока работ // Проблемы теории и практики управления. 1997. № 5. Родкина Т. А. Информационная логистика. М.: Экзамен, 2001..

Реализация подобной идеи, позволяющей управлять и контролировать совместную работу персонала и ПО, является «менеджмент потока работ» (Workflow Management ), который представляет собой управление логистикой бизнес-процессов предприятия на базе ИТ. Кулопулос Томас М. Необходимость workflow . M.: ВестьМетатехнология, 2000. Калянов Г. Н. Теория и практика реорганизации бизнес-процессов. М.: СИНТЕГ, 2000.]. Workflow -системы также иногда называют «системами управления бизнесом» (business operating system ) или «системами управления логистикой» (logistic control system ).

Объединяя участников бизнес-процесса с помощью ИТ, менеджмент потока работ превращается в эффективное средство реализации концепций, заложенных в логистике бизнес-процесса. При включении в данную схему средств ИТ образуются новые составляющие: программное и аппаратное обеспечение; эксплуатация систем; обеспечение работы каналов передачи данных и др.

Управлять действиями персонала, определенных моделью бизнес-процесса, не является задачей информационной логистики. Это задача workflow -системы, интегрирующей в себя и управляющей ПО на рабочих местах персонала.

Рисунок 3.1. - Соотношение workflow-системы и информационной логистики

В остальном логистика охватывает все уровни информационного обеспечения бизнес-процесса, включая поддержку эксплуатационных свойств компьютерных систем, на базисе которых строится менеджмент потока работ.

Дословно workflow означает «поток работ» и определяется как «технология компьютеризированной поддержки или автоматизации бизнес-процессов в целом или какой-то их части». Основной принцип технологии -- обеспечить выполнение функций конкретными сотрудником в нужный момент времени.

Вопросами технологий workflow занимается международная организация Workflow Management Coalition (WfMC -- www.wfmc.org ). B ee стандарте workflow -система описывается как «система, полностью определяющая, управляющая и обеспечивающая выполнение бизнес-процессов в виде «потоков работ» с помощью различных программных средств (ПС) в соответствии с определенными процедурными правилами». Назначение таких систем -- автоматизация процессов, включающих комбинации операций, производимых человеком, в особенности таких, в которых он взаимодействует со средствами ИТ.

Таким образом, система workflow автоматизирует процесс, а не функцию. Появление системы и ПС workflow -- это реакция рынка ИТ на внедрение новых принципов в управление предприятиями и миграцию системы управления от функционально-ориентированной к процессной ориентации. Практически все предыдущие решения позволяли достаточно эффективно автоматизировать отдельные операции и функции, а не процесс (например, функцию продаж, которая является частью процесса обслуживания клиента). По сравнению с ними система workflow дает следующие реальные преимущества:

для организации: усиливается контроль над выполнением информационных задач, повышается конфиденциальность и ужесточает контроль доступа;

для клиента: улучшается качество обслуживания, повышается его оперативность, упрощается доступ к представителям компании;

для сотрудников: каждый работающий видит перечень функций и может организовать свою работу соответствующим образом, из чего вытекают гибкость в работе, быстрота исполнения и высокая степень комфорта;

для руководства: workflow позволяет принимать решения в нужный момент и представляет достаточную информацию, чтобы руководство могло эффективно вмешиваться в процесс; workflow дает возможность менеджерам действовать оперативнее и компетентнее, обеспечивая постоянный доступ к информации о состоянии каждого заказа, а система мониторинга позволяет держать ситуацию под контролем и сделать эту функцию более эффективной;

для аналитика: автоматизация процедур на базе workflow предоставляет в его распоряжение всю необходимую статистику и информацию для анализа.

Внедрение workflow является одним из самых эффективных путей реорганизации и совершенствования бизнес-деятельности на основе применения методов информационной логистики. В настоящее время имеется положительный опыт использования технологии workflow для автоматизации в промышленной сфере. В то же время ПО класса workflow предоставляет контейнер данных и документов для каждой единицы работы и автоматически маршрутизирует движение таких контейнеров в соответствии с бизнес-правилами к пользователям или “ролям”, указанным в определении процесса Обзор workflow //http://www.kit.ru/website /DWC_lotus.Nsf . Особенно это хорошо отражает технологию обработки исходной информации при создании информационных продуктов.

Менеджмент потоков работ начинается с построения модели бизнес-процесса. Наиболее часто используется семейство методологий IDEF Марка Д. А., МакГоуэн К. "SADT - методология структурного анализа и проектирования". М.: Метатехнология, 1993 с графической нотацией, визуально определяющая взаимодействие участников бизнес-процесса с информационными ресурсами. Системы менеджмента потоков работ во многих случаях включают в себя визуальные средства построения моделей процессов. При этом стандартов на внутреннюю нотацию workflow -системы не существует -- основными примитивами служат обычно некий «блок» как выполнение какой-либо функции исполнителем, и линия со стрелкой как условие перехода от одного блока к другому. Аналитик, работая в workflow -системе, аналогичным образом моделирует бизнес-процесс.

Примером workflow -системы является комплексная система управления потоками работ и организации конфиденциального документооборота OPTIMA-Workflow , которая предназначена для управления процессами создания, обработки, тиражирования, хранения документов и иных информационных объектов, а также для организации и автоматизированного выполнения основных процедур делопроизводства. Использование системы обеспечивает организации в целом достижение нового качество в решении таких вопросов как:

создание полнофункциональной системы контроля исполнения поручений с единым хранилищем документов и его оптимальной систематизацией;

формализация технологических процессов формирования, согласования и обработки документов, актуальность и достоверность схем их рассылки;

улучшение контроля над выполнением процессов формирования и обработки документов, регулирование и управление системой документооборота;

повышение степени защищенности данных, вовлеченных в документооборот, обеспечение их конфиденциальности за счет использования сертифицированных ФАПСИ систем электронно-цифровой подписи и шифрования;

независимости работы над документами от личных качеств персонала за счет автоматического исполнения большинства формальных действий;

возможность адаптации учетных и аналитических систем в организации к процессам движения документов по их технологическим маршрутам;

возможность получения статистических и аналитических сводок, характеризующих различные аспекты деятельности исполнителей и результаты выполнения работ по обработке документов.

1.7. АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВЕННЫХ И ЛОГИСТИЧЕСКИХ ПРОЦЕССОВ

1.7.1. Автоматизированные системы управления

Автоматизация управления на различных уровнях промышлен­ного производства реализуется с помощью автоматизированных систем управления - АСУП (или ERP) и АСУТП. Системы ERP в иерархической структуре управления охватывают уровни от пред­приятия до цеха, а АСУТП - от цеха и ниже, хотя на уровне цеха могут быть средства и АСУП, и АСУТП. В то же время в АСУТП могут быть и межцеховые связи, если единый технологический процесс реализуется в нескольких цехах.

В последнее время в связи с развитием сети Internet автоматиза­ция распространилась на управление связями между предприяти­ями. Появились соответствующие подсистемы в ERP, но часто вза­имодействие с поставщиками и заказчиками осуществляют с помощью самостоятельных систем SCM и CRM соответственно.

Современные системы ERP строятся на основе концепции иерар­хического управления предприятием. Наряду с этой концепцией в последнее время все заметнее проявляется тенденция к созданию многоагентных управляющих систем, основанных на принципах процессного управления .

В современных системах ERP выделяют ряд подсистем. Ниже приведен список основных подсистем, встречающихся во многих системах ERP, вместе с присущими им функциями.

1 . «Календарное планирование производства». Основные фун­кции: сетевое планирование производства, расчет потребностей в мощностях и материалах, межцеховые спецификации и учет дви­жения изделий, контроль выполнения планов.

2.«Оперативное управление производством». Функции: сопро­вождение данных об изделиях, контроль выполненных работ , бра­ка и отходов, расчет норм расхода ресурсов, управление обслужи­вающими подразделениями.

3.«Управление проектами». Функции: сетевое планирование
проектных работ и контроль их выполнения, расчет потребности в
производственных ресурсах.

4.«Финансово-экономическое управление, бухгалтерский учет ».
Функции: учет денежных средств и производственных затрат , мар­кетинговые исследования, ценообразование , составление смет рас­
ходов, ведение договоров и взаиморасчетов , финансовые отчеты,
отчетность по налогам, анализ платежеспособности предприятия.

5. Логистика». Функции: сбыт и торговля, статистика и анализ
реализации, складское обслуживание, управление снабжением, за­
пасами и закупками, управление транспортировкой, оптимизация
маршрутов транспортных средств.

6. «Управление персоналом». Функции: кадровый учет, ведение
штатного расписания, расчет зарплаты.

7. «Управление информационными ресурсами». Функции: уп­равление документами и документооборотом, инсталляция и со­провождение программного обеспечения , генерация моделей и
интерфейсов приложений, имитационное моделирование производ­ственных процессов.

Как отмечено выше, существуют разновидности АСУП со сво­ими англоязычными названиями. Если наиболее общую систему с перечисленными выше функциями называют ERP, то системы, скон­центрированные на управлении производством (оперирующие ин­формацией о материалах, производстве, контроле и т. п.), называют MRP-2.

В ERP важная роль отводится системам управления данными EDM (Enterprise Data Management), аналогичным системам PDM в САПР.

Системы MES по своей функциональности близки к системам ERP и имеют ряд подсистем следующего назначения :

Синтез расписаний производственных операций;

Распределение ресурсов, в том числе распределение исполни­телей по работам;

Диспетчирование потоков заказов и работ;

Управление документами, относящимися к выполняемым опе­рациям;

Оперативный контроль качества;

Оперативная корректировка параметров процессов на основе
данных о протекании процессов и др.

Мировым лидером среди систем программного обеспечения ERP является система R/3 (фирма SAP), к числу лидеров относят­ся также системы Ваап IV, Oracle Applications, J. D. Edwards. С точ­ки зрения интеграции систем управления и проектирования следу­ет обратить внимание на систему Omega Production (компания СИКОР) . Среди отечественных АСУП следует назвать систе­мы Парус , Галактика , Флагман , М-2 и др.

Так, в системе Вааn IV имеются следующие подсистемы .

«Администратор деятельности предприятия», с ее помощью
анализируются показатели финансово-хозяйственной деятельности , сопоставляются значения текущих показателей с предельны­ми, генерируются информационные отчеты, что позволяет в целом судить о состоянии дел на предприятии;

«Производство» - служит для сопровождения данных (специ­фикаций, технологических маршрутов) об изделиях, планирования
и оперативного управления производственными процессами;

«Проект» - занимается планированием проектных работ с уче­том требуемых ресурсов, в том числе финансовых, и контролем
выполнения планов;

«Сбыт, снабжение, склады» - предназначена для решения со­ответствующих логистических задач;

«Транспорт» - служит для определения оптимальных марш­рутов перевозок с учетом загрузки экипажей и для контроля за ме­стонахождением грузов;

«Управление персоналом» - занимается ведением штатного
расписания, кадровым учетом, расчетом зарплаты;

«Финансы» - управляет денежными средствами, финансовым
планированием, распределением затрат, налоговой и финансовой
отчетностью;

«Процесс» - ориентирована на управление непрерывными
производственными процессами;

«Сервис» - служит для управления процессами обслужива­ния с составлением графика планово-предупредительных мероп­риятий, выполнением ремонта, определением требуемых ресурсов, тарифов на расходные материалы;

«Моделирование предприятия» - предназначена для оценки
эффективности работы предприятия с помощью создания и исполь­зования моделей;

«Инструментарий» - инструментальная среда для описания структуры базы данных , генерации приложений с помощью языка 4GL.

В системе Парус функционируют подсистемы:

«Управление финансами»;
«Логистика»;

«Управление производством»;

«Управление персоналом»;

«Управление бизнес-процессами».

Компоненты (модули) корпоративной информационной систе­мы Флагман (компания Инфософт) группируются в совокупности, называемые контурами. В системе семь контуров: финансово-эко­номическое управление, логистика, управление производством, уп­равление персоналом, бухгалтерский учет и анализ, контроллинг , управление информационными ресурсами.

Шагом в направлении создания единого информационного про­странства управления производством является создание средств сопряжения разных автоматизированных систем управления друг с другом. Такие средства называют конверторами или мостами (ERPBridges). Так, в системе R/3 имеется ряд мостов, например мост, связывающий R/3 с системой управления производством F/Ops. Система F/Ops относится к классу продуктов MES.

Функциями систем MES являются анализ производственных процессов, их оптимизация, управление ресурсами и расходом ма­териалов, анализ простоев оборудования, диагностика и предуп­реждение поломок оборудования, контроль и управление качеством продукции, формирование отчетов о производстве для передачи на уровень ERP.

Среди других систем MES одно из видных мест занимает про­грамма InTrack компании Wonderware. Это программное обеспе­чение позволяет предприятиям легко моделировать и контролиро­вать каждую стадию производственного процесса - от получения сырья, материалов и комплектующих до выпуска готовой продук­ции. С помощью InTrack можно определять и моделировать про­цессы, устанавливать очередность работ, контролировать незавер­шенное производство, управлять материальными запасами, выпол­нять сбор данных и т. п.

В программе InTrack используются имитационные модели про­изводства. В моделях представляются стадии и процессы произ­водства, описываемые в терминах статических объектов, таких, как материалы, операции, станки, площади, наборы данных и т. п., и динамических объектов, характеризующих, движение товарно-ма­териальных запасов, например единиц незавершенного производ­ства.

Примером автономно используемой системы организации и
управления отношениями с клиентами является CRM-система
Marketing Center компании ПРО-ИНВЕСТ. Система позволяет до­кументировать контакты с клиентами, планировать работу по каж­дому контакту, накапливать статистику для последующего марке­тингового анализа и т. п.

Примером систем SCM может служить отечественная система компании BSE, состоящая из подсистем: Vector - для управления складским хозяйством; e-Partner - для управления взаимоотноше­ниями с поставщиками и партнерами; e-Purchase - для управления торговыми операциями.

Программное обеспечение АСУТП представлено операционны­ми системами реального времени, программами SCADA, драйве­рами и прикладными программами контроллеров.

Основными требованиями, предъявляемыми к операционным системам реального времени, являются высокая скорость реакции на запросы внешних устройств, устойчивость системы (т. е. спо­собность работы без зависаний) и экономное использование име­ющихся в наличии системных ресурсов.

В АСУТП находят применение как варианты широко распрос­траненных операционных систем UNIX и Windows, так и специ­альные операционные системы реального времени. Перспектив­ной считается LynxOS - многозадачная, многопользовательская, UNIX-совместимая система. Windows NT становится системой ре­ального времени после ее дополнения средой RTX компании VenturCom. Развитый программный интерфейс RTX API, основан­ный на Win32 API, обеспечивает создание драйверов и приложе­ний реального времени. Кроме того, Microsoft разработала специ­альную версию операционных систем Windows NT для встроен­ных приложений, названную Windows NT Embedded.

При использовании в АСУТП встроенного оборудования на базе шины VMEbus целесообразно применять операционные системы QNX или VxWorks, а в случае АСУТП на базе шины CompactPCI - операционные системы OS-9, QNX или расширения Windows NT для реального времени .

Операционная система QNX канадской фирмы QSSL является открытой, модульной и легко модифицируемой. Она разработана в соответствии со стандартами POSDC, поддерживает шины ISA, PCI, CompactPCI, PC/104, VME, STD32 и др.

Операционная система реального времени Vx Works выполняет функции планирования и управления задачами. Она может функ­ционировать как в мультипроцессорных системах с общей памя­тью, так и в слабосвязанных системах с использованием распреде­ленных очередей сообщений. Vx Works поддерживает все сетевые средства, обычные для UNIX, а также ОРС-интерфейсы (OLE for Process Control). Вместе с инструментальной системой Tornado она является кросс-системой для разработки прикладного программ­ного обеспечения.

В многозадачной, многопользовательской системе OS-9 имеет­ся интегрированная кросс-среда, предназначенная для разработки приложении, включающая редактор, браузер исходных кодов, от­ладчики, компиляторы C/C++, поддерживаются коммуникацион­ные протоколы Х.25, FR, ATM, ISDN, SS7 и др.

SCADA-системы в АСУТП различаются типами поддерживае­мых контроллеров и способами связи с ними, операционной сре­дой, типами алармов (оповещений), числом трендов (тенденций в состоянии контролируемого процесса) и способом их вывода, осо­бенностями человеко-машинного интерфейса и др.

Связь с контроллерами и приложениями в SCADA-системах обычно осуществляется посредством технологий DDE, OLE, OPC или ODBC. В качестве каналов связи используют последователь­ные промышленные шины Profibus, CANbus, Foundation Fieldbus и др.

Алармы фиксируются при выходе значений контролируемых параметров или скоростей их изменения за границы допустимых диапазонов.

Число одновременно выводимых трендов может быть различ­ным, их визуализация возможна в реальном времени или с предва­рительной буферизацией . Предусматриваются возможности инте­рактивной работы операторов.

Программы для программируемых контроллеров составляют­ся на языках C/C++, VBA или оригинальных языках, разработан­ных для конкретных систем. Программирование обычно выполня­ют не профессиональные программисты, а заводские технологи, поэтому желательно, чтобы языки программирования были доста­точно простыми, построенными на визуальных изображениях си­туаций. В связи с этим во многих системах дополнительно исполь­зуются различные схемные языки. Ряд языков стандартизован и представлен в международном стандарте IEC 1131-3. Это графи­ческие языки функциональных схем SFC, блоковых диаграмм FBD, диаграмм релейной логики LD и текстовые языки - паскалеподобный ST и низкоуровневый язык инструкций IL.

Одной из широко известных SCADA-систем является система Citect австралийской компании Ci Technology, работающая в среде Windows. Это масштабируемая клиент-серверная система со встро­енным резервированием для повышения надежности. Она состоит из пяти подсистем: ввода/вывода, визуализации, алармов, трендов, отчетов. Подсистемы могут быть распределены по разным узлам сети. Используется оригинальный язык программирования Cicode.

SCADA-система Trace Mode для крупных АСУТП в различных отраслях промышленности и в городских службах создана компа­нией AdAstra. Система состоит из инструментальной части и ис­полнительных модулей. Предусмотрены управление технологичес­кими процессами, разработка автоматизированных рабочих мест руководителей цехов и участков, диспетчеров и операторов. Воз­можно использование операционных систем QNX, OS9, Windows.

Другой пример популярной SCADA-системы - Bridge VIEW (другое название Lab VIEW SCADA) компании National Instruments . Ядро системы управляет базой данных, взаимодействует с серверами устройств, реагирует на алармы. При настройке систе­мы на конкретное приложение пользователь конфигурирует вход­ные и выходные каналы, указывая для них такие величины, как частота опроса, диапазоны значений сигнала и т. п., и создает про­грамму работы приложения. Программирование ведется на графи­ческом языке блок-диаграмм.

Назначение прикладного программного обеспечения - анализ производства, воздействие на него в реальном времени. Для разра­ботки прикладного программного обеспечения в АСУТП исполь­зуют пакеты типа Component Integrator. К числу известных комп­лексов Component Integrator относятся FIX, Factory Suite 2000, ISaGRAF и др.

Комплекс Factory Suite 2000 компании WonderWare исполь­зуется при проектировании систем промышленной автоматизации от АСУТП до АСУП. В частности, в этот комплекс входят системы InTouch 7.0 и InTrack. С помощью InTouch 7.0 создаются распреде­ленные приложения со средствами построения человеко-машин­ного интерфейса, в частности SCADA-системы. Рассмотренный выше модуль InTrack служит для управления материальными по­токами и производственными запасами , контролирует загрузку оборудования на предприятии. Он интегрирован в известную сис­тему планирования ресурсов предприятия iBaan. К числу других модулей Factory Suite 2000 относятся база данных реального вре­мени IndustrialSQL Server, совокупность средств программирова­ния задач управления технологическими процессами InControl, программы статистического анализа данных SPC Pro и др.

Одной из развитых инструментальных сред разработки прило­жений реального времени является система Tornado, созданная для мультизадачной операционной системы VxWorks фирмой Wind River. Разработка приложений ведется на инструментальном ком­пьютере, которым могут быть ПЭВМ или рабочие станции Sun, HP, IBM, DEC. В базовую конфигурацию Tornado входят компиляторы C/C++, отладчики, симулятор целевой машины, командный интерпретатор, браузер объектов целевой системы, средства управ­ления проектом и др. Для разработки программного обеспечения для встраиваемых сигнальных процессоров Tornado применяют вместе со специальной операционной системой WISP . Инст­рументальная среда Tornado Prototyper и симулятор операционной системы VxWorks, работающий под Windows, могут быть получе­ны бесплатно по сети Internet , что позволяет осуществить пред­варительную разработку прикладной программы, а уже затем за­купать полную версию кросс-системы.

Инструментальная среда ISaGRAF используется для разработ­ки прикладного программного обеспечения для программируемых контроллеров PLC. Среда реализует методологию граф-схем Flowchart и пять языков программирования по стандарту МЭК 61131-3 (IEC 1131 – 3).

С развитием сетевой инфраструктуры появляется возможность
более тесной интеграции АСУП и АСУТП, ранее развивавшихся
автономно. Использование в АСУП информации о технологичес­ких процессах позволяет более рационально планировать произ­водство и управлять предприятием. Интеграция выражается в ис­пользовании на этих уровнях общих программных средств, баз данных, связей с сетью Internet на основе развития PC-совмести­мых контроллеров и сетей Industrial Ethernet и т. п. .

Конкуренция среди компаний, предоставляющих услуги транспортных перевозок, растет год от года. Однако грамотная работа с транспортной логистикой нужна не только компаниям-перевозчикам. Любая компания, у которой есть потребность регулярно что-то транспортировать (например, интернет-магазин) сталкивается со сложностями планирования работ и финансового учета, а значит и трудностями документооборота. Другими словами, если логистический процесс компании не оптимизирован - она терпит убытки.

Наиболее распространенные проблемы логистики легко перечислить:

  • Нерациональное использование транспортных средств. Порожний пробег и простой транспортных средств - частая проблема на предприятиях с собственным автопарком.
  • Сложности и потери в коммуникациях. Как правило, без автоматизации перегружается диспетчерский отдел, и даже в этом случае может быть сложно удовлетворить все входящие запросы. Если информация не хранится централизованно, в одной системе, оператору приходится выполнять множество лишних действий чтобы ее получить и передать дальше.
  • Негативное влияние человеческого фактора. Ввод и передача данных в ручном режиме отнимает время и порождает ошибки. Также, если процессы не автоматизированы, компании приходится прибегать к интуитивным решениям и ручным вычислениям - как правило, неточным.

Всё это неизбежно ведет к снижению продуктивности, а значит - оборота и доходов. Какой здесь выход? Разумеется, автоматизация. Грамотное внедрение специализированных продуктов позволяет решить все эти проблемы и «приручить» логистические схемы любой сложности.

Какие преимущества дает автоматизация транспортной логистики?

Прежде всего, автоматизация системы логистики делает прозрачными и предсказуемыми перемещения всех ваших грузов и транспортных средств. Такое возможно благодаря тонкой отладке бизнес-процессов и документооборота, аккуратного ведения бухгалтерского, налогового и управленческого учета на автоматизируемом объекте. Это наиболее ценный и, пожалуй, самый ожидаемый результат, однако за его предсказуемостью стоят часы изучения специфики бизнеса клиента и переработка подходящих программных решений таким образом, чтобы они этой специфике соответствовали. Невозможно найти два полностью идентичных бизнеса, поэтому и не существует двух полностью идентичных внедрений. Мы понимаем, как важно работать с проблемами каждого клиента индивидуально, и это дает ощутимые результаты.

Вот что еще получили наши клиенты после автоматизации логистики:

  • Смогли сэкономить. Автоматизация улучшает коммуникации между различными службами и подразделениями - особенно это заметно в крупных компаниях с большим штатом и внушительной структурой. Об улучшении экономических показателей за счет автоматизации говорят многие наши клиенты - ГК WETT, ЗАО «Арзамасский хлеб», логистический холдинг «Шенкер», «Нижегородский водоканал».
  • Работают быстрее. Слаженная работа позволяет сократить время на проведение одной операции. Это ведет к большей производительности - а значит, к увеличению пропускной способности вашей компании или подразделения.
  • Эффективнее пользуются материальными ресурсами. Сильнее всего это преимущество ощущают предприятия с собственным автопарком: после автоматизации клиенты могут следить за расходом ГСМ и использованием транспортных средств (например, определить степень износа и быстро отобрать ТС, нуждающиеся в ремонте).
  • Ввели KPI для сотрудников. Логистический холдинг «Шенкер» стал оценивать эффективность своих сотрудников, опираясь на данные ИТ-системы. Это прекрасная идея, ведь показатели в единой системе позволяют оценить реальную картину производительности. Так можно не только вычислить бездельников, но и поощрить скромных производительных работников.

Во многих сферах бизнеса необходимость быть быстрее и точнее конкурентов - уже не цель, к которой стоит стремиться ради безбедного существования, а залог удержания позиций на рынке. Вот почему автоматизация системы логистики - важнейший шаг для поддержания конкурентоспособности любой компании, осуществляющей перевозки (пусть даже в рамках самой организации).

Для качественной автоматизации, которая действительно решит проблемы компании и принесет экономическую выгоду, очень важно не только подобрать подходящие продукты, но и грамотно провести их внедрение. Очень часто специфика работы предприятия диктует требования, которые просто не могут удовлетворить массовые продукты «из коробки». Именно поэтому стоит заказывать автоматизацию только у опытных специалистов-практиков, которые знают, как адаптировать продукт для решения задач именно вашего бизнеса.

Получите бесплатный демо-доступ

Подключитесь к нашему серверу удаленно и посмотрите сами, как работает интересная вам программа.

Журнал « Логинфо »

Роль логистики в управлении современным предприятием, деятельность которого основана на принципах максимальной экономической эффективности, сегодня сложно переоценить. Инструменты и методы логистики применяются в различных областях менеджмента: с их помощью производится управление людским, финансовыми, информационными и товарно-материальными потоками. Весь сложносоставной комплекс логистики движения товарно-материальных ценностей (логистика закупок и продаж, складирования и запасов, транспортная и производственная логистика) может быть объединен в единую область логистических знаний - Управление цепочками поставок, (УЦП).

На практике использование механизма УЦП для предприятия означает оптимизацию всего пути движения товаров и позволяет контролировать каждую стадию перемещения товаров, документов, информации, учитывая все транзакции между контрагентами. Эта технология предъявляет высокие требования к организации взаимодействия внутри предприятия, между его подразделениями и с внешними компаниями, а также к уровню информационной оснащенности предприятия. Поэтому система УЦП для большинства предприятий в нашей стране пока является целью, на пути к которой необходимо последовательное совершенствование всех звеньев цепи поставок.

Оптимизация склада как основного звена цепи поставок

Для каждой компании, в зависимости от ее специфики и потребностей, существует свой ответ на вопрос, с чего именно следует начинать отладку механизма УЦП. Согласно управленческой теории ограничений, всегда следует начинать с поиска «узких мест» и способов их оптимальной эксплуатации. В большинстве случаев таким «узким местом» оказываются в первую очередь складские операции. Здесь речь идет, прежде всего, о внедрении системы управления складом (WMS), позволяющей решить общие для многих предприятий стартовые задачи: создание оперативного доступа к информации о товаре, обеспечение высокой скорости процессов и снижение числа ошибок при идентификации товара, осуществление контроля над работой персонала и т.п.

В дальнейшем, после решения проблем базового уровня, предприятие может воспользоваться и другими функциональными возможностями WMS, в частности диспетчеризация загрузки персонала и оборудования, мониторинг производительности склада, расчет упаковки транспортных мест заказа и управление зоной отгрузки в разрезе маршрутов, интеграция с роботизированными комплексами систем хранения и перемещения товаров. Список функциональных возможностей мощной WMS достаточно велик. Для значительного увеличения скорости складских операций, а также для минимизации возможных ошибок при их выполнении, все больше предприятий используют при внедрении WMS автоматические системы идентификации - идентификацию с помощью линейных или двумерных штриховых кодов и радиочастотную идентификацию (RFID). При использовании штрихкодирования информация, заключенная в штриховых кодах, нанесенных на товар, места его хранения, оборудование, бланки документации и т.д., считывается с помощью специальных устройств - сканеров или терминалов. На складах в настоящее время чаще всего используется наиболее современный on-line способ сбора и обработки данных с использованием радиотерминалов. Радиотерминалы имеют различные модификации, каждая из которых является максимально оптимальной для определенной стадии складского техпроцесса. Так, например, самые привычные ручные терминалы наиболее органично вписываются в процедуры контроля или упаковки. Они хороши там, где не требуется обработка больших объемов данных или использование подъемно-транспортного оборудования. Для процедур размещения и отбора лучше всего подходят монтируемые терминалы - полноэкранные модели с крупной внешней клавиатурой, с которыми работают водители штабелеров или самоходных тележек. А для операции приемки, которая требует ввода большого количества новых данных, выполнения маркировки товара, работы с документами идеально мобильное рабочее место, укомплектованное полноценным компьютером с беспроводной связью с локальной сетью, радиосканером, принтером, аккумулятором и лотком для бумаг.

Следует обратить внимание на распространенное заблуждение, что использование терминалов невозможно без штрихкодирования. На самом деле это не так. Организовать более эффективный техпроцесс с использованием мобильных устройств можно и без тотального штрихкодирования. Конечно, наличие штрихкода еще более упрощает работу персонала склада и снижает количество ошибок при исполнении операций, однако принципиальным условием внедрения on-line способа работы это не является.

Отличие еще более «продвинутой» RFID технологии от штрихкодирования заключается в возможности идентификации движущихся объектов с относительного большого расстояния. Идентификация производится путем считывания радиометок, причем последние не обязательно должны располагаться в зоне видимости считывающего устройства. Радиочастотная идентификация многократно увеличивает скорость выполнения складских операций; однако ее использование ограничивается высокой стоимостью (к примеру, стоимость нанесения штрихкодов и радиометок отличается в разы) и отсутствием единых мировых стандартов.

Хотя автоматическая идентификация обладает рядом бесспорных преимуществ, в некоторых случаях для организации бесперебойной и отлаженной работы склада предприятию будет достаточно внедрения WMS с использованием визуальной идентификации, когда все задания для складского персонала печатаются на бумажных носителях. Согласно практике AXELOT, применение «бумажной» технологии оправдано при отсутствии чрезмерно высоких требований к скорости выполнения операций, при сжатых сроках автоматизации и относительно скромном бюджете. Так, например, при внедрении WMS на складе, находящемся в процессе переезда, использование визуальной идентификации будет оптимальным как с точки зрения сроков, так и с точки зрения функциональности.

Управление перевозками - минимизация транспортных издержек

Под управлением перевозками понимается как управление автопарком (если он имеется у предприятия), так и процессом транспортировки грузов в целом, независимо от типов используемого транспорта. Оптимизация перевозок как еще одного звена цепи управления поставками призвана организовать обмен информацией (в частности, актуальными отчетами для оценки эффективности и качества выполняемых работ) между подразделениями компании, участвующими в процессе перевозки, обеспечить эффективное использование транспортных средств, контроль за их местоположением и состоянием грузов и т.д. Рост объемов грузопотоков и необходимость повышения уровня обслуживания делает перечисленные задачи оптимизации все более актуальными. Их решение представляется возможным путем проведения соответствующих организационных мероприятий в комплексе с внедрением автоматизированных систем управлением перевозками.

Автоматизированные системы управления перевозками обладают среди прочего такими функциональными возможностями, как:

    регистрация и контроль исполнения потребностей в перевозке грузов, возникающих на основании заказов покупателей, заказов поставщикам, накладных на внутреннее перемещение;

    регистрация и контроль исполнения заданий на перевозку грузов;

    формирование рейсов для выполнения транспортировки грузов, указанных в разных заданиях и контроль исполнения рейсов с отслеживанием прохождения маршрута транспортным средством;

    регистрация и контроль исполнения заявок на выделение транспортных средств для выполнения сформированных рейсов;

    формирование документов аналитической отчетности, позволяющих оценить ключевые показатели эффективности выполненных транспортировок по видам транспортных средств и провести анализ накопленных статистических данных

Дополнительно в рамках функционала систем автоматизации перевозок может быть выполнена визуализация маршрутов и местоположения транспортного средства на электронных картах, реализована возможность использования GPS-навигаторов.

Автоматическая система управления перевозками обычно интегрируется с модулями закупок и продаж корпоративной информационной системы, WMS-системой и с системой управления автопарком (если таковой имеется).

Результат оптимизации перевозок - повышение качества и точности выполнения заказов, сокращение затрат на персонал, снижение удельной стоимости единицы перевезенного груза, уменьшение числа холостых пробегов и т.д.

Автоматизация снабжения - необходимость для крупных предприятий

С проблемами, связанными с выполнением функции снабжения, чаще всего сталкиваются довольно крупные предприятия, имеющие разветвленную сеть филиалов и дочерних компаний. Основная трудность здесь - обеспечение консолидации информации о потребностях в материалах и оборудовании всех подразделений. В таком случае и возникает необходимость в автоматизации процесса снабжения путем внедрения специализированной информационной системы. В практике AXELOT наиболее характерным примером такого проекта является автоматизация системы управления материально-техническим обеспечением, включающая 400 рабочих мест. Эта система охватывает в едином информационном пространстве 21 филиал предприятия заказчика и 18 дочерних компаний, обеспечивая четкое выполнение ряда логистических задач, связанных со сбором и обработкой потребностей указанных подразделений, взаимодействием с поставщиками, планированием закупок и контролем их исполнения и пр. Полный цикл автоматизированного бизнес-процесса консолидации, обработки и исполнения закупок включает в себя укрупнено четыре блока взаимосвязанного функционала:

Оптимизация процессов, связанных с управлением товарно-материальными ценностями, не начинается и не ограничивается автоматизацией складских операций, перевозок, снабжения и т.д. Перед установкой автоматической системы требуется создание продуманной схемы управления теми или иными логистическими процессами, проведение определенных организационных изменений, за которыми и последует проект внедрения. Однако широкое использование автоматизированных систем управления звеньями цепи поставок как раз и позволяет говорить о том, что логистика становится в полном смысле слова современной, максимально отвечающей текущим актуальным потребностям предприятий.

Дарья Любовина, руководитель проектов